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Chapter 1

Communication principles

1.1 Single-service communication networks

The remote communication model shown in Figure 1.1 shows how users are interconnected via access

and core (WAN) networks. The access networks are either wired or wireless, but the core network is

typically wired, except when the WAN is implemented using satellites. The remote communication

model applies to both telephone networks and the global Internet.

Traditionally, WAN communication networks have developed along two tracks: circuit-switched

telephone networks and packet-switched data networks. In the former, communication is carried out

over “circuits” with dedicated transfer capacity or bandwidth.

Access
network

Core network (WAN)

Access
network

network
Access

Figure 1.1: Remote communication model

Apart from constant throughput, circuit-switching also gives 100 % reliability (zero information
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10 CHAPTER 1. COMMUNICATION PRINCIPLES

loss), constant delay and zero delay variability (jitter). In the latter track, information is broken up

into pieces of 10s to 1000s of bytes. Each piece is added control information which helps the packet-

switching network to guide or route the packet to the appropriate destination. At each switch, the

packet may be broken up into smaller pieces which are encapsulated into data link frames, for trans-

mission to the next switch or the terminal.

User data terminals, attached to a packet-switched network, send packets asynchronously, accord-

ing to their current communication needs. Although the packets are inserted in the network on an

asynchronous basis, the transmission of the packets is synchronous. A packet-switch connects mul-

tiple input links to multiple output links. Without any special mechanisms switching conflicts would

arise when packets from input links simultaneously request access to the same output link. Different

solutions with input queues, central queues, and/or output queues are possible. Switch buffers have

finite size and excessive periods of overload would result in “buffer overflow” forcing packets to be

discarded. The queueing of packets in the switches also introduce extra delay and jitter.

The anatomy of a packet switch with input buffers and output buffers is shown in Figure 1.2.

Input Buffer Switch core...
..
..

Output Buffer

Figure 1.2: Anatomy of a packet switch/router

In connectionless information transfer, the packets are sent into the network without any prior

overhead due to connection set up. Each packet can chose its own path to the destination. That is, a

packet switch might forward packets with the same source and destination address to different output

links. In the connectionless packet-switching mode there is not possible to obtain tight bounds on the

packet loss probability, packet delay or jitter.

The global Internet is the most well known example of a connectionless packet-switched network.

It is primarily used for data transport purposes such as transfer of files and world wide web documents.
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Internet is defined as the world-wide network of smaller networks inter-connected using the Internet

Protocol (IP). IP is a network protocol based on connectionless switching of variable-size packets. The

packet switch in IP networks is called router. The main drawback of the Internet used today is that

it only provides best-effort IP service. Best-effort means that the network does its best to deliver the

packets to the destination host. However, there is no guarantees on certain packet delay and jitter, or to

say the least, on successful packet delivery. Reliability in Internet is provided by a transport protocol

called Transmission Control Protocol (TCP). TCP is an end-to-end protocol, only implemented at the

network hosts.

In connection-oriented information transfer the communication is carried out over connections,

called virtual circuits (VCs) in packet-switched networks. The packets sent over a VC will normally

use the same path to the destination. Traditional packet-switched networks such as X.25 do not reserve

any resources at VC set up. Reliability is based on error detection and error recovery. Error detection

and error recovery can in general be provided on three levels: link level, network level, or end-to-end

(host) level.

Error detection is based on giving each packet a sequence number, in order to detect lost packets,

duplicate packets, and packets out of sequence. Bit errors can be detected by a checksum.

Error recovery is implemented by forward error correction (FEC) or backward error correction

(BEC). FEC is suitable for real-time services which have no time for retransmissions. FEC is based

on error correcting codes such as parity codes and Reed-Solomon codes. BEC is suitable for non-

real-time services. BEC-based error recovery relies on positive and/or negative acknowledgments.

Normally, a timer is set when the packet is transmitted. If the positive acknowledgment takes too long

time before it reaches the sender, the timer will expire and the corresponding packet be re-transmitted.

If the round trip time has a large variance compared to its mean, the timers can not be tightly set, in

which case negative ackowledgements will speed up the re-transmission process.

Flow control adapts the sender’s transmission rate to the available storage and processing capacity

at the receiver. Error detection, BEC and flow control are often integrated.

Early LAN networks for data communication include Ethernet networks, introduced in the mid

70s. Ethernet connects stations via a shared media. The media access scheme is said to be of the

broadcast type. This means that destinations can be reached without switching, by sending frames on

media which all stations listens to. No real time service is provided. The users can chose between

unreliable and reliable Ethernet data service. Reliability is based on error detection and BEC. Ethernet



12 CHAPTER 1. COMMUNICATION PRINCIPLES

can also provide flow control.

1.2 Multi-service communication networks

From the start of the data communication era in beginning of the 70s and until the mid-80s physically

separate WAN networks was used for data- and telecommunication. This was changed in 1984 when

the International Telecommunication Union – Telecommunication Standardization Sector (ITU-T),

standardized the Narrowband Integrated Services Digital Network (N-ISDN). The goal of N-ISDN

was to provide voice and nonvoice services over a digital circuit-switched network. N-ISDN connec-

tions can have a bit rate of 144 kbps in case of basic access (US and Europe), and 1488 kbps (US) or

1936 kbps (Europe) in case of primary access.

Broadband ISDN was standardized in 1988 by ITU-T. B-ISDN was anticipated to become an

universal network providing any kind of communication service, including multimedia service. Asyn-

chronous Transfer Mode (ATM) was chosen by ITU-T as the switching and multiplexing technique for

implementing B-ISDN. ATM is based on switching of fixed-sized packets (cells) over virtual circuits.

ATM cells are transferred over a synchronous (slotted) time division multiplex (TDM) fiber channels.

The TDM channels have bandwidths of multiples of 155 Mbps.

In order for Internet to become a truly multi-service network suitable for the 21st century, it must

be extended with real-time service capabilities. To this end, in the late 90s, the Internet Engineer-

ing Task Force (IETF) standardized two complementary Quality of Service (QoS) architectures or

frameworks called Integrated Services (IntServ) and Differentiated Services (DiffServ). Both these

architectures define an IP flow as a form of connectionless equivalent to a VC that carries packets

with same QoS requirements between a certain origin-destination host pair. The future Internet is as-

sumed to use ‘’route pinning”, i.e. not to change the route for successive packets within a flow unless

necessary.

LAN and MAN multi-service networks were introduced in the late 80s and early 90s. Token bus

LANs both provide real-time service as well as data service. The same is true for FDDI and DQDB

MAN networks. All these LANs and MANs interconnects the hosts over a shared medium.

Multi-service ATM networks, IP networks, broadcast LANs and MANs all rely on reservation of

resources for real-time traffic. In broadcast LANs and MANs resources are allocated deterministically.

Hence, it is possible to obtain zero frame loss, and worst case bounds on delay and jitter. In packet-
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switched networks such as ATM and IP networks, resource usage is based on statistical multiplexing or

deterministic multiplexing. In the former, the network takes advantage of that different users will have

overlapping periods of high and low bandwidth demand. The network need not to reserve capacity

according to the aggregate peak demand, but to a lower demand, closer to the aggregate average

bandwidth demand. Tight bounds on the packet loss probability, packet delay and jitter are possible in

statistical multiplexing. In deterministic multiplexing the network allocate resources according to the

aggregate peak demand of the users. The result is virtually zero packet loss and worst case bounds on

delay and jitter.

Multi-service packet-switched networks will also monitor and enforce the traffic stream entering

the network to make sure that the declared traffic parameters are not violated. Excessive packets will

be discarded or marked as low priority. During congestion periods in the network, packet switches

first drop the low priority packets.

Multi-service networks must charge the users for their use of the network in order to avoid that too

many users request the best and most expensive services. It is believed that usage-based charging, in

contrast to flat-rate charging, is most suitable for multi-service packet-switched networks.

1.3 Layered services and protocols

Communication in packet-switched networks is carried out by means of protocols implemented by

the switching nodes and the terminals or hosts. A protocol is a set of rules defining how information

should be exchanged between two entities. Protocols normally are organized in a layered model. Each

layer has its own protocol.The details of the protocol on a certain layer is hidden for other layers. Layer�	��
 use the service of the layer � immediately below it. The entities comprising the corresponding

layers on different machines are called peers. In other words, it is the peers that communicate using

the protocol. Between each pair of adjacent layers there is an interface. The interface defines which

primitive operations and services the lower layer offers to the upper layer.

The set of layers and protocols is called network architecture. Neither the details of the protocol

implementation nor the specification of the interface are part of the network architecture. The set of

protocols used by one system with one protocol per layer is called protocol stack.

Services are available at Service Access Points (SAPs). Each SAP has an address that uniquely

identifies it. To make things clearer, the SAPs in the telephone system are the sockets in which modular
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telephones can be plugged, and the SAP addresses are the telephone numbers of these sockets.

There are four basic types of service primitives:

� Request: A primitive issued by a service user to invoke some service and to pass the parameters

needed to specify fully the requested service.

� Indication: A primitive issued by a service provider either to:

1. indicate that a procedure has been invoked by the peer service user on the connection and

to provide the associated parameters, or

2. notify the service user of a provider-initiated action.

� Response: A primitive issued by a service user to acknowledge or complete some procedure

previously invoked by an indication to that user.

� Confirm: A primitive issued by a service provider to acknowledge or complete some procedure

previously invoked by a request by the service user.

Figure 1.3 shows the time sequence diagrams for confirmed and non-confirmed service.

Indication

Response

Request

Confirm

(a) Confirmed service

Service user Servive provider Service user

(b) Nonconfirmed service

Request

Indication

Servive providerService user Service user

Figure 1.3: Time sequence diagrams for service primitives.
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The primitives invoked on layer �
��
 take control and data parameters as input and pass them

as a layer � Interface Data Unit (n-IDU) to layer � . The data consists of the layer- � Service Data

Unit (n-SDU). The control parameters are of two types. First, control parameters can be for internal

layer control, e.g. the number of bytes in the n-SDU. Such control parameters are contained in the

layer- � Interface Control Information (n-ICI). Second, control parameters can contribute to Protocol

Control Information (n-PCI) to layer � . An example of such control parameters are the source and

destination host address. The n-PCI forms together with the n-SDU form the layer- � Protocol Data

Unit (n-PDU). The PCI are conveyed in a PDU header and/or trailer. It is used by the peer entities

to carry out their peer protocol. They identify which PDUs contain data and which contain control

information, provide sequence numbers, checksums and so on.

PDU  = Protocol Data Unit

IDU = Interface Data Unit
SAP=Service Access Point

ICI = Interface Control Information

SDU = Service Data Unit

n−IDU

Layer n

Layer n+1

n−SAP
PCI = Protocol Control Information

n−SDUn−PCI*n−ICI

n−PDU

n−SDUn−PCI

PCI* = part of PCI

n−PCI* n−SDUn−ICI

Figure 1.4: Relation between layers at an interface

1.4 ISO OSI reference model

The International Standards Organization (ISO) proposed in 1984 a reference model for layered or-

ganization of communication protocols. The model was called the the Open Systems Interconnection

(OSI) reference model. The ISO OSI model contains seven layers, see Figure 1.5.
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Application layer

Presentation layer

Session layer

Transport layer

Network layer

Data link layer

Physical layer

Figure 1.5: The ISO OSI reference model

1.4.1 Physical layer

The physical layer is concerned with transmitting raw bits over a communication channel. The design

issues large deal with mechanical, electrical, and procedural interfaces, and the physical transmission

medium, which lies below the physical layer. Issues include reliable transfer of bits, modulation of the

signal, bit voltage levels, time duration of a bit, how many pins the network connector has, and what

each pin is used for. A final issue is security, e.g. detection of wiretapping.

1.4.2 Data link layer

The data link layer takes the raw transmission facility and transforms it into a line that appears free

of undetected transmission errors to the network layer. The data link layer performs framing, which

collects the bits from the physical layers into frames, typically contain 10s to 1000s of bytes. The

framing can be done with a special bit sequence that detects start and end of the frame. The data

link layer also deals with error detection, error recovery and flow control, and security in the form of

privacy, integrity and authentification.

Broadcast networks have two additional issues in the data link layer: how to control access to a

shared channel and how to address the hosts attached to the shared channel. The access control deals

with issues such as bandwidth and buffer scheduling. A special sub layer of the data link layer, the

medium access control (MAC) sub layer, deals with this problem.
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1.4.3 Network layer

The network layer is responsible for functions such as addressing, call admission control, routing,

fragmentation and reassembly, error detection, error recovery, flow control, congestion control, traffic

enforcement (policing), traffic shaping, scheduling of bandwidth and buffers, network dimensioning,

charging and security.

1.4.4 Transport layer

The transport layer is the first end-to-end protocol in the reference model. It is only implemented by

the hosts, not inside the network. Its main purpose is to facilitate reliable transport of transport PDUs

called segments between hosts. Transport protocols enhances the unreliable service of the network

layer. Its functions include error detection, error recovery, flow and congestion control, user process

identification, and security. Some transport protocols do not provide error recovery. If the transport

connection requires high throughput, the transport layer might create multiple network connections to

improve throughput. On the other hand, if creating or maintaining a network connections is expensive,

the transport layer might multiplex several transport connections onto the same network connection.

1.4.5 Session layer

The session layer allows users on different hosts to establish sessions between them. A sessions allows

ordinary data transport, as does the transport layer, but it also provides enhanced services useful in

some applications. A session might be used to allow a user to log into a remote timesharing system

or to transfer a file between two hosts. One of the services of the session layer is to manage dialogue

control. Sessions can allow traffic to go in both directions at the same time, or in only one direction

at a time. A related session service i token management. For some protocols, it is essential that

both sides do not attempt the same operations at the same time. To manage between activities, the

session layer provides a token that can be exchanged. Only the side holding the token may perform

the critical operation. Another service is synchronization. The session layer may provide a way to

insert checkpoints into the data stream, so that after a system crash, only the data transferred after the

last checkpoint have to be repeated.
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1.4.6 Presentation layer

The presentation layer is, among other things, concerned with the syntax and semantics of the informa-

tion transmitted. A typical example is encoding data in standard agreed upon way. Most user programs

do not exchange random binary strings. They exchange things such as people’s names, dates, amounts

of money, and invoices. These items are represented as character strings, integers, floating-point num-

bers, and data structures composed of several simpler items. In order to make it possible for computers

with different representations to communicate, the data structures to be exchanged can be defined in

an abstract way, along with a standard encoding to be used “on the wire”. The presentation layer

manages these abstract data structures and converts from the representation used inside the computer

to the network standard representation and back.

The presentation layer also is responsible for coding and compression of images, audio and video.

Compression is used to reduce the bandwidth requirement of multimedia packet streams. Compression

works by reducing the redundancy in the information flow.

1.4.7 Application layer

The application layer contains a variety of protocols that are commonly needed. One service is the

network virtual terminal. Similar to having abstract data structures, a network virtual terminal is a

technology independent terminal that has general functionality. Special software in the application

layer maps the virtual terminal functions onto the real terminal. A second application layer service

is file transfer. Different file systems have file naming conventions, different ways of representing

text lines, and so on. Transferring a file between two systems requires handling these and other in-

compatibilities. Other application layer services are electronic mail, word wide web (WWW), remote

job entry, directory lockup, and multimedia. Security is also an issue in the application layer, such as

secure transfer of files, electronic mails and WWW documents.
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History of communication networks

2.1 Telephone networks

Ever since the advent of the telephone in 1876 by Alexander Graham Bell, voice communication

between distant locations have been possible. The first telephone networks introduced a few years

later consisted of manually operated switching offices connected to each others and to the customers’

telephones.The copper-based twisted pair was introduced in the local loop between the customer and

the local switching office in the 1890s. The human operators where replaced by electro-mechanical

switches in the 1940s. The advent of the transistor in 1948 paved the way for computer controlled

switches which were introduced in the 1960s. Starting in the 1940s until the 1980s, the local, regional

and central switches were inter-connected by coax cable. In the mid-1980s high-speed optical fibers

were introduced in the switching network.

2.2 Internet

Paul Baran, employed at the RAND corporation in US, introduced in 1962 the concepts of packet-

switching and distributed networks in his attempt to design a fault-tolerant US communication network

which should survive a nuclear war. September 1969 marked the birth of ARPANET, the predecessor

of Internet. ARPANET connected US universities which were supported by the US Department of

Defense. In the late 70s the first version of the Internet Protocol (IP) and the Transmission Control

Protocol (TCP) were introduced in ARPANET. In 1983 ARPANET became Internet. The definition

of Internet being the global inter-connected collection of smaller networks which implements the

19
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TCP/IP protocol suite still holds today. The number of hosts in the Domain Name System (DNS) has

evolved from 200 in 1981 to about 320 million in January 2005. The number if autonomous systems

(domains) was 16,000 in July 2005, and the number of IP subnetworks was 210,000. The history of

Internet applications has landmarks such as the introduction of the first email system in 1971 and the

introduction of world wide web, invented at CERN, in 1991. Early attempts of video conferencing

and IP telephony over Internet were carried out in the late 1990s.

2.3 Data networks

Data networks offers a packet-oriented transport service without any guarantees on transfer delay. His-

torically, data network standards have evolved for both LANs and WANs. The first LAN standard, the

Ethernet standard, came in 1976. Later, in 1985, the Token ring LAN standard was approved. In both

these two LAN standards, stations are connected to a shared media which they access according to

some control scheme. The first WAN standard, the X.25 standard, was approved by the ITU in 1976.

X.25 is a packet- and connection-oriented transfer technique offering low bit rate (64 kbps) connec-

tions. Most Automatic Teller Machines (ATMs) are connected through X.25 over the D-channel using

N-ISDN basic access. The Switched Multimegabit Data Service (SMDS) is a WAN network standard

primary aimed at LAN connectivity. SMDS was developed by Bellcore in the early 1990s. SMDS is

packet-oriented and connectionless.

2.4 Wireless networks

The first radio transmission across Atlantic Ocean was demonstrated in 1901 by Marconi. In 1920

the first public radio transmission took place in Germany. In the 1920s police radio in cars were

introduced in metropolitan New York area. In 1946 the first mobile telephone service in USA was

introduced by AT&T. In 1949 Claude Shannon et al. developed the basic ideas of CDMA. In 1979

and 1981 the first generation (1G) analog mobile systems AMPS and NMT was introduced in USA

and Sweden, respectively. Second generation (2G) mobile systems such as GSM, IS-95 and PDC

were introduced in 1991 (Europe), 1993 (USA) and 1994 (Japan), respectively. In 2000 countries all

over the world gave out licenses to network operators for operation of third generation (3G) mobile

systems. European 3G mobile systems will be based on UMTS. The UMTS networks will be inter-

operable with current GSM/GPRS networks. Important events in the history of wireless LANs are the
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introduction of the wireless Ethernet (IEEE 802.11) in 1997 and Bluetooth in 2000.

2.5 Multi-service networks

Multi-service networks have an important advantage over pure data networks, namely real-time ser-

vice capabilities. Multi-service networks have evolved since the mid 1980s and standards exist today

for LANs, MANs and WANs. The Token bus LAN standard was approved in 1985. An important

application environment for Token bus is factory automation. The FDDI and DQDB MAN network

were developed during the early 1990s. Multi-service WANs include Frame relay, Narrowband ISDN,

Broadband ISDN/ATM and the QoS enhanced Internet. The Frame relay standard was developed in

1984 and was first seen as a competitor to the X.25 standard. Frame relay is designed to be efficient

for fiber communication characterized by low transmission error rates. The N-ISDN and B-ISDN are

standards of the ITU approved in 1984 and 1988, respectively. N-ISDN is circuit-switched and offers

bandwidths up to 2 Mbps. B-ISDN is based on ATM which is a packet-switched technology. B-ISDN

offers high bit rates, starting from 155 Mbps. It is not clear when (and even if) B-ISDN will offer

international connectivity. If this happens B-ISDN will be a direct competitor to the QoS enhanced

Internet, which is believed to be gradually introduced in the coming decade.



22 CHAPTER 2. HISTORY OF COMMUNICATION NETWORKS



Chapter 3

Overview of resource management

3.1 Introduction

In this chapter we present an overview of resource management in multi-service networks. The starting

point is a network consisting of a set of nodes, interconnected by links according to some network

topology. In case of ATM or IP networks the network topology is often partly meshed. We concentrate

on resource management on the OSI network and transport layers. Such a layer is either connection-

oriented or connectionless. We use the term virtual circuit (VC) to denote a network layer connection

in an ATM network, and the term flow to denote the connectionless equivalent to the VC in an IP

network. The ATM VC is identified by the VPI/VCI value in the ATM cell header. The IP flow

is identified by the source and destination IP address, source and destination port number and the

transport protocol (TCP/UDP). Alternatively, the flow identifier in the IPv6 packet header can be

used. Often, the presentation refers to both ATM VCs and IP flows. In this case we use the term call

to refer to both ATM VCs and IP flows.

We use an hierarchical model to describe traffic in the network [38]. The model consists of three

layers operating on different time scales, see Figure 3.1. The upper layer is the call layer which

operates in a time scale of seconds. The traffic on this layer is characterized by the call arrival process

and the call holding time distribution. Calls generate packets, either at a constant rate or at variable

rate. In the later case, the burst layer is used to model the burst arrival process. The burst layer is

an intermediate traffic layer which operates in the time scale of milli seconds. The lowest layer is the

packet layer which operates in the time scale of micro seconds.

The network operates either in on demand or delayed call set up mode. In on demand call set up

23
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Call layer

s

ms

Burst layer

Packet layer � s

Figure 3.1: Hierarchical traffic model

calls set up blocked calls are cleared while in delayed call set up they are delayed in a queue until

sufficient capacity becomes available in the network.

The network performance on the call layer is called Grade of Service (GoS) and consists of the

call blocking probability and the call set up delay. The call blocking probability measures the network

availability. Telephone networks are usually dimensioned to block (reject) less than 1 % of the call

requests.The call set up delay in ATM networks should be in the order of tens of milliseconds in case

of on demand call set up.

Network performance on the burst and packet layer is called Quality of Service (QoS) and consists

of end-to-end packet loss probability, delay, and delay variability (jitter). The delay can be described

by the mean delay or the � 
������ quantile of the delay distribution. The jitter is defined as the difference

between the � 
������ quantile of the end-to-end delay and the minimum end-to-end delay.

Network services are divided into guaranteed services and elastic services. Guaranteed services

offers deterministic or statistical QoS guarantees. A deterministic guarantee could be zero packet loss

and guaranteed packet delivery within 100 ms. Statistical guarantees could be packet loss probability

of 
������ , delivery of 98 % of the packets within 100 ms, and jitter less than 50 ms. Elastic services can

tolerate relatively large variations in throughput and delay. However, they typically require low packet

loss.

Resource management is of utmost importance in multi-service communication networks. Re-

source management is concerned with the three-way relationship between traffic volume, network

resources and realized QoS and GoS. Fixing two of them, the third quantity can be determined. The
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goal of resource management is to maintain the QoS and network availability, while using the network

resources as efficiently as possible. Then latter behavior is crucial for network operators who want

to maximize their revenue in a competitive environment. The resource management algorithms for

realizing resource management in B-ISDN and future Internet will not be standardized.

Buffer managementShaping

Policing

Call admission control

Routing

Network dimensioning
Long term

Call duration

propagation
delay

packet time

Time scale

Preventive control Reactive control

Control type

Congestion control

Charging

Packet scheduling

Figure 3.2: Classification of resource management functions

Figure 3.2 shows a classification of the resource management functions studied in this report. Re-

source management functions are classified into three main categories: preventive resource manage-

ment, reactive resource management, and combined preventive/reactive resource management func-

tions. Preventive resource management aims at avoiding congestion from occurring too often. Re-

active resource management resolves congestion situations occurring during the information transfer

phase.

Resource management functions are also classified according to the time scale they operate on. We

can distinguish the packet time scale, the propagation delay time scale, the call duration time scale,



26 CHAPTER 3. OVERVIEW OF RESOURCE MANAGEMENT

and the long term time scale.

The teletraffic engineer designing the various resource management functions faces an accuracy-

simplicity dilemma. Accurate QoS and GoS performance models are desired to enable efficient re-

source allocation decisions, which are neither too pessimistic nor too optimistic. Simple QoS and

GoS performance models are necessary to allow practical implementations which meet the timing

constraints of the decision making.

3.2 End-to-end traffic model

The network is assumed to consist of a set of switching nodes interconnected by � uni-directional

links. The capacity of physical link  "!
#�$�% 
'&�(�(�()& ��* is denoted +-, .
The network is offered traffic from . classes which are assumed to be subject to statistical multi-

plexing. The / -th class, /0!21
$3% 
'&�(�(�(4& .5* , is characterized by the following:

� Origin-destination (OD) node pair,� Packet traffic descriptor �7698 &�: 8 &<; 8 � ,� Packet QoS requirements �>="?@A� ,B,�C 8 &<D ?8 &FE ?8 � ,� Renewal call arrival process with rate GH8 [s ��I ],� Generally distributed call holding time with mean 1/ JK8 [s],� Set of alternative routes, L
8 ,� Reward parameter MN8O!�� ��&FPQ� for CAC and routing function, and� Revenue parameter RS8�!�� ��&FPT� for dimensioning function.

The packet traffic descriptor include:

� Peak bit rate 6 8 [bits/s],� Mean bit rate : 8 [bits/s],� Maximum burst size ; 8 [bits],

The packet QoS requirements include:
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� Packet loss probability tolerance = ?@A� ,B,�C 8 ,� Packet delay tolerance D ?8 [s],� Packet delay variability tolerance E ?8 [s],

The parameter MN8 is a CAC and routing control parameter that can be used to achieve several

different objectives of the network operator. In particular it can be used to maximize the network

revenue if the reward parameters are proportional to the call charging. It can also be used to achieve

fairness in network access by increasing the reward parameters for handicapped calls and vice versa.

The parameter RU8 is a dimensioning control parameter used to model the revenue generated by a

call. Note that the revenue parameter R 8 can be different from the reward parameter M 8 if the latter is

used to control the fairness.

3.3 End-to-end QoS measures

In this section we present formulas for the end-to-end packet loss probability (ratio), end-to-end buffer

overflow probability, end-to-end mean delay, end-to-end � 
O�V�W� quantile of delay, and end-to-end

packet delay variation.

Let X<Y denote the packet loss probability or the buffer overflow probability in node Z . Assume the

end-to-end path consists of [ nodes. If we assume the buffer occupancy on successive links to be

independent, we can compute the end-to-end packet loss probability or buffer overflow probability as:

X]\_^a`cb"$ 
d� efYcg I � 
h� X�Y � (3.1)

The end-to-end mean packet delay, D , is computed as:

D $ Dji Ylk �mD-nBoqpro)p Ylk4s (3.2)

where D i Ylk denotes the minimum end-to-end packet delay given by [64]

Dji Ylkt$ D \_^ ?]u p ` Ywv ^a` Y � k �mD \�x � \_^ s ^<` Y � k �yD `wx�^ k , i Y ,z, Y � k �D x p ^ ,z, priS{ @}| � e~ Ycg I D ,r� Y ` ? b Ylk4s C Y (3.3)
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and Dtnzo)proqp Ylk)s denotes the sum of queueing delay experienced along the path:

D-nBoqpzoqp Ylk4sh$ e~ Ywg I J�Y (3.4)

The packetization delay is the time it takes to accumulate enough bits to fill a packet. The propagation

delay occurs due to the speed of light in the transmission medium and depends on the distance between

the source and destination. Transmission delay depends on the speed (capacity, bandwidth) of the link

and becomes negligible as the transmission speeds increases. The reassembly delay occurs occurs

when several packets of a frame (e.g. AAL frame) are collected before they are passed to the upper

protocol layers. The switching delay is the total time it takes for a packet to traverse the switch/router.

The queueing delay are due to the fact the some packets must wait in a queue to resolve switching

conflicts.

The switch/router employs either cut-through switching or store-and-forward switching. Cut-

through switching means that the switch/router starts to forward bits from the packet as soon as it

arrives. Store-and-forward switching means that the router/switch waits for the complete packet to

arrive before it starts to forward it. In the first case D `wx�^ k , i Y ,B, Y � k is given by the transmission delay at

the source. In the second case D `wx�^ k , i Y ,B, Y � k is given by the sum of transmission delay at the source

and the transmission delay at each store-and-forward switch/router.

Theoretically, the probability density function of the end-to-end packet delay can be obtained by

taking the convolution of individual packet delay density functions in the switches/routers. But due to

signaling constraints, this is not a feasible method to derive the end-to-end � 
��5��� quantile of delay.

Instead some approximative method can be used.

The end-to-end � 
��m�W� delay is obtained by adding the fixed minimum delay, D�i Ylk , to the end-

to-end � 
��5�W� queueing delay:

D � �W� $ Dji Ylk �mD-nBoqpro)p Ylk4s�� �W� (3.5)

Note that if a playout buffer is used, the playback time point is normally set to D � �W� .
The effective end-to-end delay D p��_� experienced by the application user is given by:

D pB�_� $ D0���mD ? ��� Ylk4s �mD o \<\ p x � \�x � ` � ? ��@ , (3.6)

where D � $ D or D � $ D � ��� . The coding delay includes any the time to convert a non digital signal

to digital bit patterns. For example, an analog signal generated by voice, audio or video source is
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sampled and digitized before transmission in the network. The coding delay also includes any delay of

the application compression/decompression algorithm (e.g. JPEG, JPEG, MP3). The upper-protocol

delay is due to protocol processing at higher layers (e.g. transport layer, application layer).

The end-to-end peak-to-peak packet delay variation (PDV) can also be obtained by some approx-

imative method.

3.4 Traffic policing and traffic shaping

Traffic policing is done at the ingress node of the network. The objective of policing is to assure that

the user does not violate the declared traffic parameters negotiated at call set up.

In ATM networks traffic policing is done by the Generic Cell Rate Algorithm (GCRA). For each

cell arrival, the GCRA determines whether or not the cell conforms to the traffic contract of the con-

nection [5]. The GCRA is realized as a virtual scheduling algorithm or a continuous-state Leaky

Bucket Algorithm. For VBR ATM connections, the peak cell rate is enforced by one GCRA and the

maximum burst size and mean cell rate is enforced by another GCRA.

In IP networks traffic policing is done by the token bucket algorithm. Two buckets are used. The

first is used to enforce the mean byte rate and maximum burst size, and second is used to enforce the

peak byte rate.

Traffic shaping is implemented at the users terminals. This function adapts the user’s sending rate

to the declared traffic profile. The shaping function can be implemented by a packet buffer and traffic

policing unit. The packets wait in the buffer queue until they are admitted by the policing function.

3.5 Call admission control and routing

3.5.1 General considerations

Call Admission Control (CAC) is used for networks which provide QoS guarantees such as circuit-

switched networks, ATM networks and QoS enhanced IP networks. CAC is part of preventive resource

management which also includes traffic policing. The purpose of CAC is to decide for each new call

request, if the call should be accepted or if it must be rejected. The decision is based on three criteria:� the QoS requirements for network calls,� the GoS requirements for network call classes,
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� the call reward requirements.

CAC is realized by two sub functions: CAC ����� and CAC � ��� . The purpose of the CAC �����
function is to decide whether a particular path is expected to offer sufficient QoS to existing calls as

well as the new call. If sufficient resources are expected, the call may be accepted on the particular

path, otherwise it must be rejected. The purpose of the CAC � ��� function is to maintain the GoS

and maximize the average reward rate. Different call types will be charged differently and will thus

generate a different reward for the network. The CAC � ��� function decides if carrying a call on a

certain path is economical or not. For example, assume the networks is offered one category of narrow-

band calls with a small reward, and one category of wide-band calls with a large reward. In this case,

the CAC � ��� function may decide to reject narrow-band calls when the path just has free capacity to

one more wide-band call.

The CAC function is carried out along with the routing function. The routing function chooses

only a path which passes the CAC �K��� test. Moreover, it is up to the CAC � ��� function to decide

whether the path recommended by routing function is consistent with GoS requirements and long-

term objectives on average reward.

3.5.2 Design of CAC �����
The CAC ����� function make use of a model of packet transport performance in the network. A packet

network is a complex network of queues. The behavior of a packet stream, e.g. the packet interarrival

times, will typically change as the packets cross the network. The reason is that at each switch/router

the packets share the output multiplexer with packets from other calls. The mixing of traffic streams

can result in clumping and dispersion of packets since packets may have to wait in the queue for their

turn to be transmitted. A multiplexer inside the network will be offered traffic streams that have passed

zero or more multiplexing steps before arriving to this multiplexer. However, to consider the “sharing

effects” experienced by each call is believed to be too complex. Instead, each switch/router in the

network is analyzed as if it is offered fresh user traffic which only has passed the policing function.

The packet traffic on successive links are assumed to be independent. When a new call is accepted to

the network only the traffic on the path of the new call is assumed to be changed.

Switching conflicts can give rise to packet scale congestion and burst scale congestion. These

types of congestion are due to overload on different time scales. Packet scale congestion are due to the

random fluctuations on a short time scale due to variable packet interarrival times. The output link can
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Figure 3.3: Buffer overflow distribution

only transmit one packet at a time, and if many packets simultaneously want access to the same output

link, all but one packet must wait in a queue. Burst scale congestion occurs at a larger time scale when

the total input rate to the multiplexer exceeds the output capacity for some time period. In this case,

the buffer occupancy level will increase until the buffer is saturated or the total input rate decreases.

Switching conflicts that arise when the buffer is saturated can not be resolved, forcing arriving packets

to be dropped.

The probability of packet loss due to packet scale congestion can be reduced by using a small

central or output buffer which can hold in the order of 100 packets per output link. The buffer require-

ments are proportional to the number of input links. To obtain a low probability of packet loss due

to burst scale congestion much larger buffers may be required. The buffer requirement is in this case

counted in hundreds of packets. See Figure 3.3 which shows the general characteristics of a buffer

overflow distribution.

The fluid flow queueing model captures the behavior of burst scale congestion. Hence, perfor-

mance measures derived from the fluid flow queueing model will be accurate in the case of large

buffers. For smaller buffer sizes, the queue analysis should be performed assuming Markov modu-
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lated Poisson process (MMPP) packet arrivals. The MMPP queueing model captures the behavior of

both packet and burst scale congestion.

In general, performance evaluation faces an accuracy-simplicity dilemma. High accuracy is de-

sired to to admit correct and efficient call admission control. High accuracy enables call admission

control which is neither too optimistic nor too pessimistic. Low complexity (high simplicity) is re-

quired since call admission control must operate in real time and provide admission decisions in in

the order of tens of milliseconds. Hence, the designer of call admission control must make a tradeoff

between accuracy and simplicity.

3.5.3 Design of CAC � ���
The CAC � ��� function decides whether the path recommended by the routing function is consistent

with GoS requirements and long-term objectives on average reward.

The CAC function should provide an efficient access control of direct and alternative routed calls

to the links. The trunk reservation method is used to restrict the access of alternative routed calls when

the link load is high. In particular, when the free capacity is less or equal to a threshold �a8 the link will

not accept alternative routed calls. Another method is called external blocking. With this method only

a fraction � 8 of the calls that are rejected on the direct path are allowed to request a non-direct path.

Trunk reservation and external blocking are part of CAC � ��� . The best overall blocking performance

is achieved if trunk reservation and external blocking are combined.

Another issue for the CAC fuction is the distribution of blocking probabilities, or access fairness,

among the call classes. Without any special control mechanisms, calls with higher bandwidths de-

mands (i.e. wide-band calls) will suffer higher blocking probabilities than calls with lower bandwidth

demands (i.e. narrow-band calls). To level out the blocking probabilities trunk reservation can be used

to protect wide-band calls from bandwidth depletion. That is, direct or alternative routed narrow-band

calls are rejected when the free capacity is below or equal to a threshold  '8 . Trunk reservation to level

out the per-class call blocking probabilities is part of CAC � ��� .

3.5.4 Routing in circuit-switched networks

Fixed routing is the simplest form of routing [43]. In this method calls are only offered to a single

path, i.e. no alternative routing is used. If the single path is busy, the call is rejected.

Load sharing routing distributes the calls among the alternative paths according to the load sharing
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probabilities [43]. Each call is offered to one path only, and if this path is busy, the call is rejected.

The load sharing probabilities may be determined from optimization.

Sticky random routing provides a simple form of alternative routing [32]. The algorithm works as

follows. The call is first offered to the direct path. If it is available, the call is established. Otherwise,

the call is offered to a previously chosen alternative path. If the alternative path is available, the call is

established. Otherwise, the call is blocked and the alternative path is reselected. The new alternative

route is used by the next call that find the direct path busy. British Telecom employed in 1996 a

sticky random routing algorithm called Dynamic Alternative Routing (DAR) in the British telephone

network.

Sequential routing chose paths for new calls according to fixed alternative sequences [33]. The

first path in the sequence to be tried is the direct path. If it is busy, the remaining paths are tried, in

order, until a path that is able to accept the call is found, or there is not more paths in the sequence in

which case the call is rejected. The sequence of paths tried by the routing function is obtained from an

optimization procedure. The Dynamic Nonhierachical Routing (DNHR) employed by AT&T in the

US telephone network during the 1980s was based on sequential routing.

Least loaded routing (LLR) is the first example of state-dependent alternative routing [4]. The

call is first offered to the direct path. If it is busy, an alternative path is searched for according to a

state-dependent routing rule. If no such path is found the call is rejected. The state-dependent routing

rule selects a path with sufficient capacity that also has the largest free capacity of its bottleneck link.

The bottleneck link is the link with least free capacity along the path. Real-Time Network Routing

(RTNR) replaced DNHR in the AT&T network in 1991. RTNR is based on LLR routing with real-time

state observations.

Markov decision process (MDP) routing is the second example of state-dependent alternative rout-

ing [24]. Given a model of the call traffic, MDP theory is able to compute a state-dependent routing

rule which achieves optimal average reward rate. The routing rule selects the path with has the largest

positive long-term reward gain for the new call. If no path has a positive gain, the call is rejected. The

idea of MDP routing is simple: control the Markov chain such that it visits high income network states

more often than low income network states. The optimal set of decisions can be computed using the

Policy Iteration algorithm from Markov decision theory.
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3.5.5 Routing in IP networks

Internet consists of a huge number of individual IP subnetworks with unique network addresses (about

210,000 in July 2005). To make the best effort routing in Internet manageable, the IP subnetworks are

divided into a set of Autonomous Systems (ASs). An AS is a portion of the network which is under

control of a single administrative unit such as a campus. Today (July 2005) Internet has about 16,000

ASs. Special routing protocols are used within the ASs and between the ASs, called intra-domain

routing and inter-domain routing protocols, respectively [68].

The intra-domain routing protocols are either based on distance vector routing or on link-state

routing. The protocols use some algorithm to compute shortest path routes between the source and

destination. The context for the shortest path routing is a network with two weight associated with

each link – one weight for each direction of the link. The weights measure the “distance “ or cost of

crossing the link. The weight could be either packet delay, bandwidth, reliability or some link cost.

The distance between two nodes are computed as a sum of link metrics along the path connecting the

node pair. Figure 3.4 shows an example network depicted as a graph with links weights.

Inter-domain routing is more focused on finding loop-free paths which can reach the destinations

than on finding optimal paths. The ASs use a set of policies to guide the selection of paths.

The future Internet will not only offer best effort service but also QoS service. To meet this goal

Internet has to be extended with resource reservation, traffic policing and QoS intra- and inter-domain

routing. QoS routing finds paths which meets multiple constraints on path bandwidth, delay, jitter,

loss, cost etc.

3.6 Congestion control

The virtual circuit (VC) from the source end-system (SES) to the destination end-system (DES) is

composed of sequence of source-destination pairs interconnected by direct links. Congestion con-

trol in ATM networks is implemented by an end-to-end rate mechanism. ABR SESs adjust their

transmission rates dynamically between a pre-determined MCR and Peak Cell Rate (PCR), based on

the amount of network bandwidth left unused by higher priority service categories (CBR, rt-VBR and

nrt-VBR). The rate adjustment is done using a closed-loop feedback mechanism, using Resource Man-

agement (RM) cells. RM cells convey control information to the SESs about the state of the network,

such as congestion state and bandwidth availability.
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Figure 3.4: Example network graph with link weights. Only one of the two weights for each bi-

directional link is shown.

Forward RM (FRM) cells are generated by the SESs and inserted into the outgoing data stream,

see Figure 3.5. One FRM cells are sent periodically – one FRM cell after every [ x i data cell (e.g.[ x i =32). On their way to the DES and back from the DES to the SES, RM cells are processed by

the switches. When an RM cell arrives at the DES, the destination changes the direction bit (DIR) in

the cell and returns it to the SES. RM cells traveling from DES to the SES are called Backward RM

(BRM) cells. BRM cells bring updated network state information to the SESs.
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Figure 3.5: ABR rate based flow control

The rate at which an ABR source is allowed to schedule cells for transmission is denoted by ACR

(Allowed Cell Rate). The ACR is initially set to the Initial Cell Rate (ICR) and is always bounded

between MCR and PCR. The Current Cell Rate (CCR) value in the FRM cell is set to the ACR, and the
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Explicit Rate (ER) value is set to the PCR. The SES dynamically adjusts the ACR to the congestion

information it receives via the BRM cells. A switch convey information about congestion status or

desired rate via RM cells.

An important objective in the allocation of bandwidth to ABR connections is fairness. Two main

fairness criteria have been considered in the literature: max-min fairness and proportional fairness.

The former criteria has been chosen by ATM forum and it is adopted by many ER allocation algo-

rithms.

The max-min allocation is defined as follows [41]. Given a configuration with � contending

sources, suppose the Z `cb source is allocated a bandwidth ¦�Y . The allocation vector %_¦ I & ¦ � &�(w(w(w& ¦�k�* is

feasible if all link load levels are less than or equal to 100 %. Given an allocation vector, the source that

is getting the least allocation is, in some sense, the “unhappiest source”. We need to find the feasible

vectors that gives the maximum allocation to this unhappiest source. Now we remove this “unhappiest

source” and reduce the problem to that of the remaining �§�¨
 sources operating on a network with

reduced link capacities. Again, we find the unhappiest source among these �2�¨
 sources, give that

source the max- minimum allocation and reduce the problem by one source. We repeat this process

until all sources have been allocated the maximum they can get.

3.7 Packet scheduling

3.7.1 Buffering strategies

Consider an ATM switch or a IP router with multiple input and output links. Without any special

mechanisms, switching conflicts would arise when packets arriving at different input ports simultane-

ously want access to the same output link. To resolve the switching conflicts buffers are used to queue

packets waiting for transmission. The buffers can be placed at three places in a switch/router: at the

inputs, at the outputs or centrally [69].

Input queueing is least efficient; it suffers from Head Of Line (HOL) blocking. Lets assume input

port Z and / has a packet destined for output link 6 . Further, assume that in queue / there is a second

packet destined for output link © for which there is currently no packet waiting in the other input

queues. HOL blocking manifests itself by the fact that while the packet first in queue / waits for

transmission, it also forces the packets behind it to wait. That is, the packet destined for output link ©
must wait although there would be no switching conflicts for that packet.
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The central queueing solution behaves exactly as the output queueing solution. This means that

the mean waiting time is exactly that of the output queueing system. However, since multiples queues

are combined in a single physical memory, the major advantage of the central queueing system is

reflected in the number of packets to be stored in the central memory (central queue). A more compli-

cated control logic is required to ensure that the single central memory performs the First-In-First-Out

(FIFO) discipline to all outlets. The memory size can be computed as the convolution of [ individual

output queues.

Indeed, since the buffer memory will be shared, a more effective use of the memory can be made.

It can be shown that with the size of the central memory and the sum of the output buffer memory

sizes being equal, the central queueing yields lower packet loss probability than output queueing.

3.7.2 First-in-First-Out queueing

In the First-In-First-Out (FIFO) queueing discipline packets are served according to the order at which

they arrive. That is, the server operates on a First-Come-First-Served (FCFS) basis. FIFO/FCFS

provides statistical sharing among calls. Each call receives a statistical (long-term) fraction of the

server capacity. On the short term, no guarantees on service are given, since the likelihood of obtaining

service depends on the momentary behavior of other sources using the same multiplexer. In particular,

if too many sources send at their peak rates the buffer will overflow and packets will have to be

dropped. The FCFS discipline is work conserving, which means that the server is never idle when it

has work to do.

The FCFS discipline may also change the time spacing between successive packets leaving the

switch/router. The obvious reason is that packets may have to wait in the queue before being served.

Packets may suffer from clumping or dispersion. In clumping the time distance between two succes-

sive packet is reduced, and in dispersion the time distance is increased. The packet clumping/dispersion

introduces delay variability which might be critical for real-time services.

To smooth out delay variability, the receiver can use a playout buffer. Packets which arrive at the

receiver is placed in buffer which is served in a periodic manner. Packets have time stamps which

indicate the time when they were transmitted from the source. The receiver reads out a packet from

the buffer a fixed time after the packet was sent from the source. Note that the smoothing ability, i.e.

the size of the buffer, is limited by the maximum tolerated delay.
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3.7.3 Priority queueing

In (time) Priority Queueing (PQ) separate FIFO queues are used for each call class,which may contain

one or more calls. The queues have different priorities which control the order in which queues are

served. A low priority queue is only served if there are no packets in the higher priority queues.

Starvation of low priority packets is therefore possible if the packet arrival rates of higher priority

call classes are too high. However, by proper CAC all calls should be guaranteed a certain statistical,

long-term fraction of the server capacity. The PQ discipline is work conserving. Like FIFO, packet

streams may suffer from delay variability.

3.7.4 Weighted fair queueing

In Weighted Fair Queueing (WFQ) each call class has its own FIFO queue [66]. Each queue is guaran-

teed to obtain a certain fraction of the bandwidth (given by the weight of queue) on both the short-term

and long-term time scale. When no packets arrive within a call class the excess capacity is shared

fairly, according to the weights, among active call classes. The WFQ discipline schedules packets

according to the time the packets would have been sent by bit-by-bit round robin. Hence, if all queues

contain only one packet each, and all weights are equal, the packets are transmitted in increasing

packet size order. When a packet is transmitted the packet behind it becomes first in the queue. This

new packet joins the bit-by-bit service emulation and if the packet is short enough it may be transmit-

ted before other longer packets which already were first in their queue when the short packet reached

the head of its queue. The WFQ discipline is work conserving. Due to the “isolation” between call

classes the packet delay variability under WFQ becomes lower than under FIFO or PQ.

3.8 Buffer management

In the simplest form of buffer management all classes completely share the buffer capacity. On the

other hand, space priority queueing assigns buffer space to packets according to their priority. Two

examples of such schemes are the Push out scheme and the Partial buffer sharing scheme [64].

3.8.1 Push out scheme

The push out scheme operates only when the buffer is full. When a low priority packet arrives at a full

buffer, it is dropped. When a high priority packet arrives at a full buffer and a lower priority packet is
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in the buffer, the lower priority packet is “pushed out”, and the arriving high priority packet is added

to the buffer. Simulation experiments show that when two priority classes contribute equally to the

load, the packet loss for the higher priority class is dramatically reduced while the packet loss for the

lower priority class increases slightly.

3.8.2 Partial buffer sharing scheme

The partial buffer sharing scheme reserves a fixed number of buffer spaces for high priority packets.

Packets from all classes share the buffer space until the buffer content reaches a threshold. If the

number of packets in the buffer exceeds the threshold then only higher priority packets will be accepted

(as long as there is space). Simulation results indicate that partial buffer sharing performs only slightly

worse than the push out approach.

3.9 Dimensioning in circuit-switched networks

3.9.1 General considerations

In this section we describe dimensioning in circuit-switched networks. The algorithms also apply

to packet-switched networks with virtual circuits such as ATM networks. Even QoS enhanced IP

networks which use the concept of flows, which are the equivalents of ATM virtual circuits, may use

the dimensioning algorithms designed for circuit-switched networks.

A set of virtual networks can be overlayed on the physical network to simplify resource manage-

ment. A given virtual network is typically targeted at a specific QoS class. For example, in ATM

networks, separate virtual networks can be maintained for CBR, VBR, ABR and UBR services, re-

spectively. The topology of the virtual networks may be different from the physical network topology.

Each virtual network link may be carried by one or several physical links. Each physical link is in

general shared between multiple virtual networks. The bandwidth allocation at the call layer may be

based on complete sharing (CS), complete partitioning (CP) or partial sharing (PS). The bandwidth

allocation at the packet layer may be based on deterministic multiplexing or statistical multiplexing.

Resource allocation to virtual and physical networks is referred to as virtual/physical link capacity

dimensioning [27, 43]. The first step in network dimensioning is the design of the topological struc-

ture of the network, i.e. where to place the nodes and how to interconnect them. In most cases the

location of the nodes is given for political or historical reasons. So only the structure of the intercon-
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nection graph has to be determined. This can be done through methods of topological optimization

and graph theory. By performing this step, connectivity and reliability constraints and link costs have

to be regarded. The link cost information is simply a fixed node interconnection cost per unit length,

depending on the used technology. For ATM in most cases the result of the topological design phase

will lead to a partly meshed backbone network structure. The second step of network dimensioning

determines, given the network topology, traffic demand and GoS requirements, the capacities (band-

widths) of the physical and virtual network links.

3.9.2 Problem formulation

The objective used in dimensioning of the virtual and physical networks can be of several types. Two

common examples are maximization of the average revenue and minimization of total network link

cost. The first type objective of objective function can in case of physical network dimensioning be

written as:

Lª�z« &F¬�� $ ~8_­¯® G�8NR°8²± 
���; 8��z« &F¬O�r³ (3.7)

where «´$´�]+ I�&�(�(�(q& +�µ � denotes the vector of physical link capacities and ¬ denotes a set of CAC

and routing parameters. For example, in MDP routing ¬ refers to the set of reward parameters, and

in LLR routing ¬ refers to the set of trunk reservation parameters or external blocking factors. Note

that although the CAC and routing strategy is specified, its optimal parameters may be a function of

network flow distributions and link dimensions which are not known in advance. Thus, in general, the

CAC and routing parameters, ¬ , should also be treated as optimization variables.

The second type of objective function can in case of physical network dimensioning be written as:

¶ �z« &F¬�� $ ~
, ­ � ¶ , �]+ , &F¬�� (3.8)

where ¶ , denotes a cost function for link  .
The objective function should be optimized subject to a constraint. An absolute GoS constraint

specifies that the absolute call blocking probability for a given call category and OD pair should be

less than or equal to a given value:

; 8��z« &F¬O�¸·¹; ?8 (3.9)
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3.9.3 Grade of Service models

In general the network dimensioning procedures require network performance models since the net-

work design should meet the call blocking probability constraints. The fixed point equations is based

on statistical link independence resulting in decomposition of the network model into a set of link

loading functions, º @ , and link performance functions, º \ :
» , $¼º @ �>½ &<¾¿� (3.10)À , $�º \ � » , & + , � (3.11)

where
» ,O$Á± ÂÃ,8 & /Ä!Å1 ³ denotes the offered traffic to link  , À , denotes the set of required perfor-

mance characteristics of link  (e.g. state probabilities or blocking state probabilities), ¾ denotes the

routing policy, and +", denote the link capacity of link  . The fixed point equations can be solved using

repeated substitutions.

3.9.4 Optimization framework

The problem of finding vector of link capacities where «Æ$Ç�]+ I &�(�(�(q& + µ � that optimizes the non-

linear objective function under the given set of non-linear constraints can be solved using Sequential

Quadratic Programming (SQP).

The basic idea of SQP is to model the nonlinear programming problem (NLP) at a given approx-

imate solution, say ¦�u , by a quadratic programming subproblem, and then to use the solution to the

subproblem to construct a better approximation ¦¿u�È I . This process is iterated to create a sequence

of approximations that, it is hoped for, will converge to the solution ¦�É . The nonlinear constraints

are replaced by a linear first order Taylor series approximation and the nonlinear objective is replaced

by a second order Taylor series approximation augmented by second order information from the con-

straints. Perhaps the key to understanding the performance and theory of SQP is that fact that, with

an appropriate choice of quadratic subproblem, the method can be viewed as the natural extension of

Newton and quasi-Newton methods to the constrained optimization setting.
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3.10 Charging and pricing

Charging, pricing, accounting and billing are crucial features of telecommunication services. How

should the network provider design tariffs for the range of services offered? This is partly a marketing

decision – tariffs must be attractive to customers – but network providers are also concerned with

efficiency and cost-recovery. Charging schemes should encourage efficient use of the network and

should generate revenue in a fair way according to the relative usage of customers.

In multi-service networks, tariffs might depend on a number of parameters defining the traffic and

QoS characteristics of a call, in order that charges should reflect network resource usage. The way that

a customer uses the network depends on the tariffs and also on how the customers values each type

of call (the customer’s utility, in the language of economics). The interplay between tariffs, network

resource usage, and customer incentives is a fertile area for economic and mathematical models.

Multi-service networks need to include facilities for charging, pricing, accounting, and billing

[74]. In this context, charging designates the evaluation of costs for the call. The cost is calculated

based on some characteristics of the call, according to a charging scheme, which in turn is part of a

tariffing policy. Pricing is the process of assigning a price (expressed in monetary units) to a specific

service. This process combine technical considerations, such as the amount of resources used for

a service, and economical considerations, such as applying tariffing theory and marketing methods.

Accounting involves gathering information necessary so that the total charge can be itemized against

tariffs and usage measurements. Billing involves collecting charge information over a given period

and communicating this to the customer in the form of a bill. Another important concept is advise

of charge, where a customer can be given on request the charge for a specific call (whether intended,

ongoing or just completed).

A tariffing policy may include both call charges and subscription charges. We will say that charg-

ing is usage-based when the call charges are included. Usage-based charges may also include sub-

scription charges that are not related to usage.

3.10.1 Multi-service network costs

The cost of multi-service networks consists of the following [74]:

� The incremental cost of send an extra packet. In the absence of congestion this is essentially

zero;
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� The congestion costs, or social costs of delaying other users’ packets. As above, this cost is zero

when there is no congestion;� The fixed costs of the network infrastructure (e.g. routers, communication lines, maintenance,

and management;� The incremental costs of connection to the network. This involves the cost of the access lines

and customer premises equipment needed to connect to the network. This cost represent the

largest portion of the total cost for an organization to connect to the multi-service network;� The cost of expanding the capacity of the network.

Fixed costs constitute the major percentage of the total costs. On the other hand, the marginal or

incremental costs are non-zero only in the presence of network congestion. The observation leads to

the proposition than under normal (i.e. uncongested) operation, the network charges should include

only fixed charges. However, in the presence of congestion, charges should also include a non-zero

usage charge which depends on the level of congestion and the magnitude of the users’ contribution

to it. This effect of congestion on prices can be expressed either with dynamically adjusted prices or

time-of-day sensitive prices.
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Chapter 4

Traffic modeling

4.1 Definition of traffic processes

Simple traffic consist of single arrivals of discrete entities (call or connection requests, packets etc.)

[30]. It can be mathematically described a point process, consisting of a sequence of arrival instantsÊ I & Ê � &�(w(w(w& Ê k &�(w(w( measured from the origin 0; by convention, Ê � $ � . There are two additional equiv-

alent descriptions of point processes: counting processes and inter-arrival time processes. A count-

ing process %q[m�Ë� � *4Ì` g � is a continuous-time, non-negative integer-valued stochastic process, where[y�Ë� � $ Max % �ÎÍ Ê k · �F* is the number of (traffic) arrivals in the interval � ��& � ³ . An inter-arrival

time process is a non-negative random sequence %_�ak9*)Ìk¯g I , where �Bk�$ Ê k � Ê k ��I is the length of the

time interval separating the � -th arrival from the previous one. The equivalence of these descriptions

follows from the equality of events:

%q[y�Ë� � $ � *Ã$3% Ê k · � · Ê k È I *Ã$�% k~u g I � u · �¸Ï
k È I~
u g I � u * (4.1)

since Ê k	$ÑÐ ku g I � u . Unless otherwise stated, we assume that %_�<k�* is a stationary sequence and that

the common variance of ��k is finite.

4.2 Second-order statistics

Second-order statistics express relations between traffic occurencies at two time instants. The follow-

ing are second order properties of a stochastic process %_Ò�k�* in discrete time [59].

45
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� Autocovariance C(k):

+0�ÔÓ � $¨ÕÖ±w�ËÒ-k � Ò � �ËÒ k È�u � Ò �r³ $¨ÕÖ± Ò-k�Ò k È�u ³�� Ò � (4.2)

� Autocorrelation R(k):

× �ÔÓ � $¨Õ	± Ò-k²Ò k È�u ³ (4.3)

� Autocorrelation coefficient M9�ÔÓ � :
M9�ÔÓ � $¼+0�ÔÓ ��Ø Var ± Ò u ³ (4.4)

� Power spectrum Ù��ËÚ � :
Ù��ËÚ � $VÛ	% × �ÔÓ � *�$ Ì~

u g � Ì × �ÔÓ ��Ü � YÞÝ u (4.5)

� Autocovariance spectrum #d�ËÚ � :
#d�ËÚ � $ÅÛ�%4+t�ÔÓ � *�$ Ì~

u g � Ì +0�ÔÓ ��Ü � YÞÝ u (4.6)

The autocovariance spectrum #d�ËÚ � can be expressed as

#d�ËÚ � $¨ßËZ :áà-â Ì Õ
ãäæå 
ç¯è �¨
-ééééé

à~k'g � à ¦W� �ê��Ü � YÞÝ�k ééééé
��ëæìí (4.7)

The squared Û -transform of ¦W� �ê� (divided by the record length) may be used as an estimator of

the autocovariance spectrum. As such, it is known as the periodogram î#�ï �¿ð �ËÚ � :
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î#�ï �¿ð �ËÚ � $ 
[ ééééé
e ��I~k'g � ¦�� �ê��Ü � YÞÝ�k ééééé

�
(4.8)

4.3 Traffic burstiness

A recurrent theme relating to traffic in multi-service networks is the traffic “burstiness” exhibited by

key services such as compressed video, file transfer etc. Burtiness is present in a traffic process if the

arrival points % Ê k�* appear to form visual clusters; that is, %_�<k�* tends to give rise to runs of several

relatively short interarrival times followed by a relatively long one. The mathematical underpinning

of burstiness is more complex. Two main sources of burstiness are due to the shapes of the marginal

distribution and the autocorrelation function of %_�ak9* . For example, burstiness would be facilitated

by a bimodal marginal distribution of %_�<k�* , or by short-term autocorrelation in %_�<k�* . Strong positive

autocorrelation are a particularly major cause of burstiness. Since there seems to be no single widely-

accepted notion of burstiness, we briefly describe some of the commonly-used mathematical measures

that attempt to capture it [30].

The two simples measures of burstiness take account only of first-order properties of traffic (they

are each a function of the marginal distribution only of interarrival times). The first one is the ratio of

the peak rate to the mean rate – a very crude measure, which also has the shortcoming of dependence

on the interarrival length utilized for rate measurement. A more elaborate measure of burstiness is the

coefficient of variation, defined as the ratio of the standard deviation to mean ¶ � $òñó± �Bk ³ËØ Õ	± �zk ³ of

interarrival times.

In contrast, the peakedness measure and the index-of-dispersion measures do take account of

temporal dependence in traffic (second-order properties). For a given time interval of length Ê , the

index of dispersion for counts (IDC) is the function ô ? � Ê � $ Var ± [m� Ê �r³ËØ ÕÖ± [m� Ê �r³ ; i.e., the variance-to-

mean ratio of the number of arrivals in the interval ± ��& Ê ³ . Since the number of arrivals is related to the

sum of interarrival intervals via Equation (4.1), the numerator of the IDC includes the autocorrelation

of %_�Bk�* . The index of dispersion for intervals (IDI) is defined as

1 u $ Var õ Ð uk'g I �BY È k¯öÓ�Õ � ±l÷� ³ (4.9)

where %_�BYz* is a stationary sequence of interarrival times.

The peakedness concept is related, but more involved. Assume that the traffic stream %_�Nk�* is
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offered to an infinite server group consisting of independent servers with common service times dis-

tribution ø . Let # be the equilibrium number of busy servers. The peakedness is the functionalù � ± ø ³ $ Var ±}# ³ËØ ÕÖ±}# ³ , which maps a service time distribution to a real number. A commonly used

peakedness is ù4prú \ � ��� , obtained as a limiting case for an exponential service distribution with service

rate approaching 0.

Finally, the Hurst parameter û can be used as measure of burstiness via the concept of self-

similarity.

4.4 Renewal models

In a renewal process, the � k are independent, identically distributed (IID), but their distribution is

allowed to be general. Unfortunately, with a few exceptions, the superposition of independent renewal

processes does not yield a renewal process. The ones that do however, occupy a special position in

traffic theory and practice. Queueing models historically have continually assumed renewal-offered

traffic.

Renewal processes, while simple analytically, have a severe modeling drawback – the autocorre-

lation function of %_� k * vanishes for all nonzero lags. The importance of capturing autocorrelations

stems from the role of the autocorrelation function as a statistical proxy for temporal dependence in

time series. Since burstiness can be explained to a large extent by positive autocorrelation in %_�_k9* ,
renewal processes are not used to model packet arrival processes. However, for call arrival processes,

the renewal model is believed to be adequate.

The Poisson model is the oldest traffic model, dating back to the advent of telephony and the

renowned pioneering telephone engineer A.K. Erlang. A Poisson process can be characterized as a

renewal process whose interarrival times %_�ak�* are exponentially distributed with rate parameter G :

P �Ë�Bk · � � $ 
-� exp � � G9� � . Equivalently, it is a counting process, satisfying P �>[y�Ë� � $ �ê� $
exp � � GH� � �]GH� � k Ø)�ýü , and the number of arrivals in disjoint intervals is statistically independent (a prop-

erty known as independent increments).

Poisson processes enjoy some elegant analytical properties. First, the superposition of independent

Poisson processes results in new Poisson process whose rate is the sum of the component rates. Sec-

ond, the independent increment property renders Poisson a memoryless property. This, in turn, greatly

simplifies queueing problems involving Poisson arrivals. Third, Poisson process are fairly common
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in traffic applications that physically comprise a large number of independent traffic streams, each of

which can be quite general. The theoretical basis for this phenomenon is known as Palm’s Theorem.

It roughly states that under suitable but mild regularity conditions, such multiplexed streams approach

a Poisson process as the number of streams grows, but the individual rates decrease so as to keep the

aggregate rate constant.

4.5 Markov-based models

A.A. Markov and A. Kolmogorov laid the foundation to the theory of Markov processes in the early

20th century. A discrete-state stochastic process %_Òm�Ë� ��þ ��ÿ � * is called Markov chain if for � � Ï¹� I Ï� � Ï (�(�( Ï¹�BkÖÏ¹� , the state transition probability function satisfies the following Markov property:

=0± Òm�Ë� � $V¦ þ Òm�Ë�zk � $V¦�k & Òy�Ë�Bk ��I � $V¦�k ��I &�(�(�(_& Òy�Ë� � � $V¦ � � $¨=0± Òy�Ë� � $¨¦ þ Òy�Ë�Bk � $V¦�k ³ (4.10)

That is, the current state summarizes all relevant information about past states. Unlike renewal traffic

models, Markov traffic models introduce dependence into the random sequence of interarrival times

[30]. Consequently, they can potentially capture traffic burstiness, due to non-zero autocorrelations in

the interarrival time process. We may interpret transitions of the Markov chain as signalling arrivals.

4.5.1 Discrete-time Markov chains

A discrete-time Markov chain (DTMC) is characterized by state changes that can take place only at

discrete times. The DTMC has geometrically distributed state sojourn times.

A DTMC can be characterized by the properties if its states. Let º�� k��Y}8 denote the probability that

the first return to state Õd8 occurs at the � th step. The probability of at least one return to state Õ�8 is

given by

º�8B8h$ Ì~k¯g I º � k��8B8 (4.11)

Thus the system is certain to return to Õ�8 if º�8B8�$ 
 . In this case J�8B8 defines the mean return (recur-

rence) time:

J�8B8h$ Ì~k¯g I � º � k��8z8 (4.12)
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The states of a discrete-time Markov chain can be classified based on the definition of the first return

times as follows:

1. A state is transient if ºq8B8�Ï 
 ,
2. A state is recurrent (persistent) if º)8B8�$ 
 ,
3. A recurrent state is null if J�8B8h$ P and nonnull if J�8B8�Ï P ,

4. A state is periodic with period � if a return only is possible in � & ç � &�� � &�(�(�( steps,

5. A recurrent state is ergodic if it is nonnull and aperiodic.

An irreducible DTMC is one which all states are reachable from all other states. The states of

an irreducible DTMC are either all transient or all recurrent nonnull or all recurrent null. An ergodic

DTMC is irreducible, recurrent nonnull, and aperiodic. Most of the systems in which we are interested

are modeled by ergodic DTMC chains because this corresponds to well-defined steady state behavior.

If the transition probabilities are independent of the time index � the DTMC is homogeneous.

In a DTMC, a set + of states is said to be closed if the system, once it is in one of the states of+ will remain there indefinitely. A special example of a closed set is a single state Õ 8 with transition

probability 6 8B8 $ 
 . In this case, Õ 8 is called absorbing state.

Theorem

Let ¾ � k��8 �$ =0± Ò-ká$�/ ³ be the probability of finding the system in state Õh8 at the � th step. In an

irreducible and aperiodic homogeneous Markov chain the limiting probabilities

¾ 8 $	��

�k â Ì ¾ � k��8 (4.13)

always exists.

Moreover, either:

1. all states are transient or all states are recurrent null in which case ¾ 8 $ � for all / and there

exists no stationary distribution, or

2. all states are recurrent nonnull and then ¾ 8�� � for all / , in which case the set % ¾ 84*F8�­ � is

a stationary probability distribution which are uniquely determined from the following linear

equation system:
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ãäæå ¾ $ ¾��Ð YË­ � ¾ Y�$ 
 (4.14)

where ¾ $Á� ¾ I &�(�(�()&<¾ e � and � denotes the state transition probability matrix � $ �76 Y}8 � and6 Y}8 denotes the transition probability between state Z and state / .
4.5.2 Continuous-time Markov chains

A continuous-time Markov chain (CTMC) is characterized by state changes that can occur at arbitrary

points in time. A CTMC can be completely described by an initial state probability vector for Òm�Ë� � �
and transition probability functions. The CTMC has exponentially distributed state sojourn times. A

CTMC is said to be irreducible if every state can be reached from every other state, with non-zero

probability. A state is said to be absorbing if no other state can be reached from it with non-zero

probability. Notion of transient, recurrent nonnull, recurrent null carry over from DTMCs. There is

no notion of periodicity for a CTMC, however. An irreducible CTMC is ergodic.

If the CTMC is ergodic the equilibrium probability distribution % ¾ Yz*_Y ­ � can be obtained from a

set of linear equations subject to the probability conservation constraint:

ãäæå ¾�� $ ��&Ð YË­ � ¾ Y�$ 
 (4.15)

where ¾ $Ñ� ¾ I &�(�(�(q&<¾ e � and � denotes the infinitesimal generator matrix � $ �>©'Yæ8 � and ©_Yæ8 denotes

the transition rate between state Z and state / . The diagonal elements ©¯YlY are determined such that the

sum of all elements in each row is zero.

4.5.3 Markov renewal process

Markov renewal processes (MRPs) generalize renewal processes and Markovian arrival processes

(MAPs). Markov-renewal models are more general than discrete-state Markov processes, yet retain a

measure of simplicity and analytical tractability. A Markov renewal process
× $ %²�ËÒ k & Ê k � * Ìk'g � is

defined by a Markov chain %_Ò0k�* and its jump times % Ê k�* , subject to the following constraint: The

distribution of the pair �ËÒ0k È I & Ê k È I � , of next state and inter-jump time, depends only on the current

state Òtk , but not on previous states nor on previous inter-jump times. Again, if we would interpret
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transitions of %_Òtk�* as signalling arrivals, we would have dependence in the arrival process. Also,

unlike the DTMC and CTMC case, the interarrival times can be arbitrarily distributed, and these

distributions depend on the state of the Markov process.

4.5.4 Semi-Markov process

The semi-Markov process (SMP) is a continuous-time discrete-state Markov process with generally

distributed state sojourn times. SMPs generalize DTMCs and CTMCs. The SMP may be shown to be

equivalent to the family of MRP [19].

4.6 Markov-modulated processes

Markov-modulated models constitute an important class of stochastic models.

Let %_Òm�Ë� � * Ì` g � be a continuous time Markov process, with state space of 
'& ç &�(w(w(w&�: (more com-

plicated state spaces are possible). Now assume that while Ò is in state Ó , the probability law of

customer arrivals is completely determined by Ó , and this holds for every 
�· Ó ·¹: . Note that whenÒ undergoes transition to, say, state / , then a new probability law of arrivals is modulated by the state

of Ò .

4.7 Markov-modulated Poisson processes

The most commonly used Markov-modulated model is the MMPP (Markov-Modulated Poisson Pro-

cess) model, which combines the simplicity of the modulating (Markov) process with that of the

modulated (Poisson) process [30]. In this case, the modulation mechanism simply stipulates that in

state Ó of Ò , arrivals occur according to Poisson process at rate G u . As the state changes, so does the

rate.

MMPP models can be used in a number of ways. Consider first a single traffic source with variable

state. A simple traffic model would quantize the rate into a finite number of rates and each rate

would give rise to a state in some Markov modulating process. Certainly, it remains to verify that

exponential holding times are an appropriate description, but the Markov transition matrix �3$Ñ±��0Yæ8 ³
of the putative Ò can be easily estimated from empirical data. Simply quantize the empirical data, and

the estimate � u 8 by calculating the fraction of states that Ò switched from state Ó to state / .
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As an example, consider a two-state MMPP model, where one state is an “on” state with an

associated positive Poisson rate, and the other state is an “off” state with associated rate zero (such

models are known as interrupted Poisson for obvious reasons). These models have been widely used

to model voice sources; the “on” state corresponds to a talk spurt (when the speaker emits a sound),

and the “off” state corresponds to a silence (when the speaker takes a break).

4.8 Markov modulated fluid process

The fluid paradigm dispenses with individual arriving units. Instead, it views arriving units as a stream

of fluid, characterized by a flow rate (e.g. bits per second), so that a arrival count is replaced by a arrival

volume [30].

Fluid models are appropriate to cases where individual units are numerous relative to a chosen

time scale. Put differently, an individual unit is by itself of vanishingly little significance, just as one

molecule more or less in a water pipeline has but an infinitesimal effect on the flow.

Typical fluid models assume the sources are bursty – of the “on-off” type. While in the “off” state,

traffic is switched off, whereas in the “on” state traffic arrives deterministically at constant rate G . For

analytical tractability, the durations of the “on” and “off” periods are assumed to be exponentially

distributed and mutually independent.

4.9 Characteristics of self-similar processes

4.9.1 Discrete-time self-similar process

The following definition of self-similarity for discrete-time stochastic processes is widely adopted.

Assume Ò u to be a discrete-time wide-sense stationary process with mean ÕÖ± Ò u ³ $ Ò and autocor-

relation function M9�ÔÓ � .
Consider next the process Ò�� i �u � : $ 
'& ç &�(w(w(7� that are constructed out of Ò u as Ò�� i �u $ Ii Ð i ��Ik'g � Ò u i È k ,

i.e. by averaging over non overlapping blocks of size : . The process Ò�� i �u are also wide-sense sta-

tionary, with mean Ò and autocorrelation function M � i � �ÔÓ � . The process Ò u is called exactly self-

similar, with self-similarity parameter û , � � ÏQûÇÏ 
q� , if it satisfies

Ò u �$ : I���� Ò�� i �u (4.16)
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That is, the processes Ò u and : I���� Ò � i �u should have the same finite-dimensional distributions for

all aggregation levels : .

The discrete-time stochastic process Ò u is called asymptotically second-order self-similar if it

satisfies

M � i � �ÔÓ � $¨MH�ÔÓ � for : & Ó�� PV( (4.17)

In teletraffic modeling the discrete-time stochastic process Ò u represents the number of traffic

entity (packets, connections/calls) arrivals at time Ó .

4.9.2 Continuous-time self-similar process

In case we have a continuous-time stochastic process, Òm�Ë� � , the following definition is widely adopted.

The continuous-time stochastic process %_Òm�Ë� � * is strictly self-similar with self-similarity parameterû , � � Ï¹ûÇÏ 
q� , if for any positive stretching factor : , the following condition holds:

Òy�Ë� � �$ : ��� Òy� : � � (4.18)

That is, the process : ��� Òy� : � � , is equal in distribution to the original process %_Òy�Ë� � * for all stretch-

ing factors : .

In teletraffic modeling the continuous-time stochastic process Òm�Ë� � represents the number of traffic

entity (packets, connections/calls) arrivals in the time interval ± ��& � ³ .
4.9.3 Manifestation of self-similarity

Self-similarity manifests itself in a variety of ways:

� slowly (hyperbolically) decaying variances: Var ± Ò�� i �u ³��3: � � if : � P , whereby � Ï"!QÏ
 ;
� a slowly decaying autocorrelation function: M9�ÔÓ �#� Ó � � if Ó$� P ;

� a power spectral density #d�Ôº � that behaves like that of 
qØ º noise around the origin: #d�Ôº �%�º � � I�� � � if º&� �
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Self-similarity also implies long-range dependence (LRD), i.e., Ð È Ìu g � Ì M9�ÔÓ � $ P . A process for

which Ð È Ìu g � Ì M9�ÔÓ � Ï P is said to be short-range dependent (SRD). Such a process differs from a

LRD process in the sense that

� the variances Var ± Ò'� i �u ³ decay as : ��I ;
� M9�ÔÓ � decays exponentially fast: M9�ÔÓ �#� Ð \ k¯g I ¶ k)( uk for large Ó ;

� the power spectral density remains finite (and approximately constant) around the origin;

� the process behaves like (second-order) pure noise for large : .

An important parameter of a LRD process is the so-called self-similarity of Hurst parameter û $
�� ! Ø ç . It is named after H. Hurst, who observed the following fact. Given a set of experimental data* u ( Ó	$ 
'&�(w(w(w&�� ), with sample mean * � �ê� $ Ik Ð k u g I * u and sample variance # � $ Ik ��I �]Ð k u g I ± * u �* � �ê�r³Ë� , define the rescaled adjusted range (R/S) statistic as

× � �ê�#d� �ê� $ 
#d� �ê� ±Max � ��& L I & L � &�(w(w(w& L§k ��� Min � ��& L I & L � &�(w(w(w& L§k �r³ (4.19)

whereby L u $Î� * I �+* � �m(w(w(N�,* u ��� Ó * � �ê� . The quantities L u measure the deviation of the process* u from its “expected value”.
× � �ê� then measures the “record” values of this deviation. For many

“naturally” occurring processes, one has Õ	± × � �ê��Ø #d� �ê�r³%�Á�#� when � � P with û “typically”

around 0.7. If * u is short-range- dependent process, i.e. with a correlation structure over only small

time scales, one would have û $ ��(.- . The larger experimental values can be explained by assuming

that * u is self-similar.

Some “tools” to asses the self-similar nature of a given trace are:

� the
× Ø # plot – plotting log ± × � �ê��Ø #d� �ê�r³ versus log � �ê� for various subsets of the available data

allows one to determine, by linear regression, the Hurst parameter û ;

� the variance-time plot – plotting log Var ± Ò/� i �u ³ versus log � :
� allows one to estimate !2$ ç � 
��û � ;
� the spectral density, which can be estimated by means of the periodogram explained previously

– plotting log ±}#d�Ôº �r³ versus log �Ôº � allows an estimate for 
h� ! .
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In general, self-similarity and LRD are not equivalent. As an example, the increments of a standard

Brownian motion are self-similar with Hurst parameter ûÆ$ 
qØ ç , but clearly not LRD (the increments

are independent). However, under the restriction 
qØ ç Ï û Ï 
 , LRD is equivalent to asymptotic

second-order self-similarity for stationary processes.

4.10 Self-similar traffic models

Recent studies of high-quality, high-resolution traffic measurements have revealed a new phenomenon

with potentially important ramifications to the modeling, design, and control of multi-service net-

works. These include an analysis of hundreds of millions observed packets over an Ethernet LAN in a

R & D environment at Bellcore [54], an analysis of few millions of observed frame data generated by

VBR video services [8], and analysis of tens of thousands of TCP connection arrivals on the Internet

[28]. In these studies, packet and connection traffic appears to be statistically self-similar.

A self-similar (or fractal) phenomenon exhibits structural similarities across a wide range of time

scales. In the case of packet traffic, self-similarity is manifested in the absence of natural length of a

burst: at every time scale ranging from a few milliseconds to minutes to hours, similar-looking traffic

bursts are evident [59].

Models of self-similar processes are needed for simulation and performance analysis. Three im-

portant examples of self-similar traffic models are:

� superposition of many renewal arrival process with heavy-tailed interarrival time distributions,� superposition of arrival processes from many ON/OFF sources with heavy-tailed ON and/or

OFF period durations,� fractional Brownian motion (FBM).

FBM is defined as a stochastic process 0 ` with the following properties [63]:

� 0 ` has stationary increments;� 0 � $ � and ÕÖ±�0 ` ³ $ � for all �¸ÿ � ;� Var �10 ` � $ þ � þ �2� for all �Sÿ �� 0 ` has a Gaussian distribution for �3� � .
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From the first three properties it follows that the covariance function is given by:

(��Ô & � � $¨ÕÖ±�0 , 0 ` ³ $ 
ç %_� �2� �  �2� � �Ë� �  � �2� * (4.20)

for � Ï  · � . For Gaussian processes, the mean and variance structure determine the finite-

dimensional distributions uniquely. Therefore we conclude from (4.20) that %40 ` Íh� · � Ï P *
and % : ��� 0 ` � : � �-Í¿�Ä· �jÏ P * has the same finite-dimensional distributions. That is, fractional

Brownian motion is strictly self-similar with Hurst parameter û . In fact, FBM is the only Gaussian

process with stationary increments that is self-similar.

Norros defines fractional Brownian traffic as

Â ` $ è � ��5 * è 0 ` & �¸ÿ ��& (4.21)

where
è

is the mean rate, * is a variance coefficient and 0 ` a FBM. Here, Â ` represents the number of

traffic entities (e.g. data packets) that is offered in the time interval ± ��& � ³ . Norros motivates the scaling

factor 5 è in (4.21) by the superposition property: the sum Â ` $ Ð76Ycg I Â8� Y
�` of . independent

FBM traffics with common parameters * and û but individual mean rates
è Y can be written Âj�Ë� � $è � 5 * è 0 ` , where

è $ Ð 6Ywg I è Y and 0 ` is a FBM with parameter û . This shows that the roles

of the three parameters of the traffic model (4.21) can be separated so that û and * characterize the

“quality” of the traffic in contrast to the long run mean rate
è

which characterizes the “quantity”

alone.

Kaj showed in [45] that the superposition of independent renewal counting processes associated

with a heavy-tailed interarrival time distribution converges weakly after rescaling in time and space to

FBM, as the number of renewal processes tend to infinity.

Taqqu, Willinger and Sherman showed in [76] that the superposition of many ON/OFF sources

whose ON periods and OFF periods exhibit the Noah effect (i.e. have high variability or infinite

variance) produces aggregate network traffic that features the Joseph effect (i.e. is self-similar or

long-range dependent). The superposition converges after scaling to FBM, as first the number of users� tend to infinity and then, in a second step, a time rescaling parameter tends to infinity.

Taqqu, Teverovsky, and Willinger conclude that normal mono-fractal models seem to suffice in a

LAN setting, but the WAN environment may require more complex structures such as multi-fractals.
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A non-negative process Òy�Ë� � is called multi-fractal if the logarithm of the absolute moments scale

linearly with the logarithm of the time scale : .

4.11 Modeling of call traffic for real applications

The network is offered traffic from . call classes. Each call class is associated with one of = origin-

destination (OD) node pairs. Each OD pair is offered traffic from 9 call categories, meaning that.Æ$¨=%9 .

4.11.1 OD pair call arrival process

Since the days of Erlang the Poisson model has commonly been used to describe the random arrivals

of call requests to the OD pairs of a telephone network. Although the Poisson model serves its purpose

in telephone networks, it lacks descriptive power in the case of Internet where a substantial portion of

traffic is World Wide Web (WWW), network news (NNTP) and email (SMTP) connections transported

by TCP. The WWW, NNTP and SMTP services produce connection arrivals which are different in

nature from the telephone service; For example, a person using the WWW service is more likely to

initiate additional downloads after the first download. A person using the telephone service is more

likely to initiate independent calls.

Measurements on real WWW, NNTP and SMTP connection arrivals in the Internet have revealed

that the arrival process shows burstiness over many time scales, ranging from seconds to hours. Paxson

and Floyd found that actual WAN traffic is consistent with statistical self-similarity for sufficiently

large time scales [67]. These findings have been verified by Feldmann et al. [29].

Crovella has proposed an ON/OFF model for the downloading of web documents [20]. A single

TCP connection is invoked in each ON period. The duration of the TCP connection follows a heavy-

tailed distribution since the distribution of WWW document sizes on Internet is heavy-tailed. The OFF

period corresponds to the user thinking time. Crovella argues that also the OFF period is heavy-tailed.

Deng also developed an ON/OFF model for the web service [21]. During the ON period, the

user makes multiple web requests each resulting in a new TCP connection. The OFF period is the

time between two ON periods while the user views the page. Deng proposed distributions for three

parameters: the duration of the ON period was found to be Pareto distributed, the duration of the OFF

period was found to be Weibull distributed as well as the interarrival time of web requests during the
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ON period.

Feldmann proposed to model the arrivals of WWW connections by a Weibull interarrival time

distribution [28]. The Weibull distribution has finite moments, including finite mean and variance of

the interarrival time. For this reason the Weibull distribution is considered to have a light tail. Since

its variance is finite the Weibull distribution does not give rise to a self-similar arrival process.

4.11.2 OD pair call service time distribution

The traditional model of call service times ; u is the (negative) exponential distribution with rate

parameter J . The exponential distribution matches the actual service times in case of telephony among

other services. However, for the WWW and FTP service, the connection service time is more heavy

tailed [20, 21, 67].

4.11.3 Link call arrival process

The arrival process offered to a given link is a result of splitting and merging of component arrival

processes. First, the per-class arrival process is splitted over many alternative paths. Second, at each

link the per-path arrival processes are merged to form a superposed arrival process to the link.

The model of the superposition range from an exact Markov Renewal Process (MRP) model [17]

to an approximate renewal process model [79]. The Palm-Khintchine theorem states that when the

number of normalized renewal processes goes to infinity and the interarrival distribution is light-tailed,

the limit process becomes Poisson. Hence, we expect the renewal model to become more accurate as

the number of OD pairs = increases. The MMPP model can be used to model the superposition of

renewal processes before convergence to the Poisson process is achieved [36].

4.12 Modeling of packet traffic for real applications

4.12.1 Voice

A packetized voice source can be accurately modeled as an ON/OFF Markov source with exponen-

tially distributed ON and OFF period durations [64]. The generation of packets in the ON state can be

modeled by a Poisson process or a constant (fluid) rate.
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4.12.2 Video

Recent measurements have shown that compressed video (e.g. MPEG) traffic exhibit self-similar

behavior on a wide range of time scales [31]. It have been shown [26] that there is a knee-point of the

buffer size below which the buffer distribution is dominated by the short-range correlations and above

which by long-range correlations. The conclusion is that if the queue operates under conditions of low

utilization and practical buffer size, the input traffic can be modeled by short-range dependent model

which is generally Markovian although the input traffic has long-range dependence.

For queueing analysis purposes, the video source can be modeled by a superposition of ON/OFF

Markov fluid sources or by a superposition of two-state MMPP sources. With proper matching of

parameters of the autocorrelation function, the set of MMPP sources is able to produce self-similar

traffic over a certain range of time scales [2]. The FBM model is another self-similar traffic model that

has been suggested for compressed video.

4.12.3 Audio

From a traffic modeling perspective compressed audio (e.g. MP3) is similar to compressed video. That

is, a superposition of Markov modulated fluid or Poisson sources can be used for queueing analysis

[64]. However, measurements on audio traffic have failed to show self-similarity.

4.12.4 LAN

Measurements on LAN Ethernet traffic at Bellcore in the early 90s showed that Ethernet packet traffic

is self-similar [54]. The aggregate Ethernet traffic can be modeled by a FBM process or by a set of

ON/OFF sources with heavy tailed ON/OFF period durations.

4.12.5 WAN

Measurements on WWW and TELNET packet traffic in the Internet conducted in the mid 90s showed

that such traffic is self-similar [67]. Plausible traffic models are the FBM model or a superposition

of ON/OFF sources with heavy tailed ON/OFF period durations. Similar measurements on FTP data

bursts within FTP sessions has shown that the FTP data burst sizes are heavy tailed.



Chapter 5

Queueing theory

5.1 Introduction

The Kendall classification of queueing systems (1953) exists in several modifications. The most com-

prehensive classification uses 6 symbols:

A/B/C/q/K/p

where

� A is the interarrival time distribution,� B is the service time distribution,� C is the number of servers,� q is the queueing discipline (FCFS, LCFS, . . . ),� K is the system capacity (number of customers in service + in queue),� p is the population size (numbers of possible customers). Omitted for open systems.

The following symbols are used for arrival and service distributions:

� M is the exponential distribution associated with the Poisson/Markov process,� E u is the Erlang distribution with parameter Ó ,� H u is the Hyper-exponential distribution with parameter Ó ,

61
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� D is the deterministic distribution,� G is a general (any) distribution,� GI is a general (any) distribution with independent random values.

(a)

waiting room waiting room

(b)

Type I calls Type II calls

Type I calls

:
servers :

servers

Figure 5.1: (a): Â Ø4;-Ø + delay system, and (b): Ð Â Y Ø4;-Ø + mixed loss-delay system.

The queueing systems of interest in this compendium can be classified into pure loss, pure delay

and mixed loss-delay systems. We assume the following characteristics of these systems. In a loss

system, customers are normally accepted in order of arrival (first come, first served) and customers

are lost when no free server is available. In a delay system customers are normally served on a FCFS

basis and when no free server is available, the customer is delayed in a finite or infinite waiting room.

In a mixed loss-delay system we have two types of customers. Customers of type I have access

the link with no restriction, but will be blocked if all servers are busy. Customers of type II have

restricted access to the service facility; the cutoff parameter M � specifies the maximum number of type

II customers that can be in service at the same time. Therefore, a queue of type II customers forms

as soon as a type II arrival finds M � type II customers already in service or otherwise if there are not

enough free servers.

The performance measures of interest in a queueing systems include:

� probability of loss (blocking),� probability of delay,� utilization of servers,
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� average number of customers in system and in queue,� waiting time distribution in the system and in queue,� mean waiting time in system and in queue,

The teletraffic pioneer A.K. Erlang studied the
è Ø è Ø + loss system and the

è Ø è Ø + delay sys-

tem with infinite waiting room [13]. Erlang derived the Erlang B formula for the blocking probability

in a loss system, and the Erlang C formula for the delay probability in a delay system.

The superposition of the renewal processes was modeled by Cherry in [17]. His early result (1972)

states that the superposition of two renewal processes is a Markov Renewal Process (MRP), which

has an equivalent semi Markov Process (SMP) representation. Note that a superposition of renewal

processes is autocorrelated and is therefore not renewal.

In case of a Poisson arrival process, and exponential service process, the state represents the num-

ber of customers present in the system. The state transition probabilities, which are part of the queue-

ing model, become easy to formulate. This is due to the memoryless property of the exponential

distribution: the probability of the next event being an arrival/departure is independent of the time

offset between the latest arrival and the latest departure. This is not the case if we replace the Poisson

process with a non-Poisson process such as the Weibull process: the probability of the next event

being an arrival/departure now becomes dependent on the time between the latest arrival and the latest

departure.

The queueing systems 9 ô Ø è Ø + and
è Ø 9 Ø�
 can be analyzed in at least two ways. In the first

way, the SMP for the superposition of arrival and service process is constructed using the method

of supplementary variables [18]. By introducing new state variables, which contain some temporal

information, the Markov property can be preserved, resulting in a SMP. For the 9 ô Ø è Ø + system

the temporal information represents the type of the latest event, and the time offset between the latest

event and the latest complementary event. For the
è Ø 9 Ø�
 system the temporal information represents

the elapsed service time. The second way is based on the embedded Markov chain method [46, 47].

In this method the arrival or departure instants are used as regeneration epochs of the Markov chain.

Its main advantage is that the state space is significantly smaller than for the method of supplementary

variables. The embedded Markov chain method is restricted to the case with one customer category.

The general 9 ô Ø 9 Ø + queue is complex to analyze, and is still subject to active research. The

results achieved so far are based on approximative analytical methods or exact numerical methods.
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The reference [11] contains a comprehensive summary of state-of-the-art results for the 9 ô Ø 9 Ø +
queue. The analytical methods include the interpolation approximations by Whitt [80] and Kimura

[48]. A recent analytical method is the diffusion approximation by Whitt [81]. Exact numerical

methods include the work by Takahashi and Takami [75] and Bertsimas [9, 10].

5.2 Notation and structure for basic queueing systems

We consider a queueing system A/B/C/q/K/p according to Kendall’s notation. We focus attention

on the flow of customers as they arrive, pass through, and eventually leave this system; as such, we

choose to number the customers with the subscript � and define +�k as follows:

+Uk denotes the � th customer to enter the system

We are interested in the stochastic process [m�Ë� � where

[y�Ë� � �$ number of customers in the system at time � (5.1)

Another stochastic process of interest is the unfinished work ;j�Ë� � that exists in the system at time � ,
that is,

;j�Ë� � �$ the unfinished work in the system at time ��$ the remaining time required to empty the system of all customers present at time �
Whenever ;j�Ë� � � � , the the system is said to be busy, and only when ;-�Ë� � $ � is the system said to

be idle. The duration and location of these busy and idle periods are also quantities of interest.

The details of these stochastic processes may be observed by defining the following variables and

then by displaying these variables on an appropriate time diagram to be discussed below. We begin to

define the arrival time of customer +dk :

Ê k �$ arrival time for +¸k (5.2)

and further define the interarrival time between +hk ��I and +Sk as
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�Bk �$ interarrival time between +dk ��I and +Skj$Ê k � Ê k ��I ( (5.3)

Since we have assumed that all interarrival times are drawn from the distribution Âj�Ë� � , we have that

=Ö± �zk · � ³ $¨Â �Ë� � (5.4)

which is independent of � . Similarly, define the service time for +�k as

¦�k �$ service time for +Sk (5.5)

and from our assumptions we have

=0± ¦�k · ¦ ³ $ ; �Ë¦ �F( (5.6)

The sequences %_��k9* and %_¦�k�* may be thought of as input variables for our queueing system; the way

in which the system handles these customers gives rise to queues and waiting times that we must now

define. Thus,

Rdk �$ waiting time (in queue) for +dk ( (5.7)

The total time spent in the system by +dk is the sum of his waiting time and service time, which we

define by

 _k �$ system time (queue plus service) for +�k-$ÅRdk � ¦�k ( (5.8)

Finally, we introduce the concept of limiting random variable ÷� defined by

÷� �$	�


�k â Ì �zk (5.9)

which we refer to by ��k<� ÷� . The typical notation for the probability distribution function (PDF) will

be

=0± �Bk · � ³ $¨Â�k��Ë� � (5.10)

and for the limiting PDF
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=0±w÷� · � ³ $¨Âj�Ë� � (5.11)

This we denote by ÂÃk��Ë� � � Âj�Ë� � . Similarly the probability density function (pdf) for �Fk and ÷� will

be * k��Ë� � and * �Ë� � , respectively, and will be denoted * k��Ë� � � * �Ë� � . Finally, the Laplace transform of

these pdf’s will be denoted by Â�Ék �Ô � and Â É¯�Ô � , respectively, with the obvious notation that Â"Ék �Ô � �ÂÃÉ¯�Ô � . Of course, the moments of the interarrival time are of interest and they will be denoted as

follows:

Õ	± � u ³ �$ � u & Ó0$ ��&_
'& ç &�(�(�( (5.12)

For the first moment � a special notation has been adopted

�ý$ 
G (5.13)

where G denotes the average arrival rate of customers to our queueing system.

Summarizing the information with regard to the interarrival time we have the following shorthand

glossary:

�Bkj$ interarrival time between +dk ��I and +Uk�Bk=� ÷� & Â�k��Ë� � � Âj�Ë� �F& * k��Ë� � � * �Ë� �F& ÂÃÉk �Ô � � ÂÃÉ'�Ô ��Bk=� �ó$ I> & � uk � � u (5.14)

In a similar manner we identify the notation associated with ¦¿k , R�k and  qk as follows:

¦�kt$ service time for +Sk¦�k$� ÷¦ & ; k��Ë� � � ; �Ë� �F& ? k��Ë� � � ? �Ë� �F& ; Ék �Ô � � ; É �Ô �¦�k$� ¦�$ I@ & ¦ uk � ¦ u (5.15)

Rdkt$ waiting time for +¸kRdk$� ÷R & L2k��BA � � Lª�BA �F& Rdk��BA � �ÇRj�BA �F& L Ék �Ô � � L É �Ô �RÃk=� R�$¼L & R uk � R u (5.16)

 qkj$ system time for +¸k qk=� ÷ & #�k��BA � � #d�BA �F&  _k��BA � �  ��BA �F& #óÉk �Ô � � #ýÉ¯�Ô � qk=�  $DC &  uk �  u (5.17)
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: k
: k ��I� k G k

H k

Figure 5.2: Time-diagram notation for queues.

The behavior of a queueing system random is further explained in Figure 5.2. In this time dia-

gram the lower horizontal line represents the queue and the upper horizontal line represents the service

facility; moreover the diagram shown is for the case of single server, although this too is easily gen-

eralized. An arrow approaching the queue (or service) line from below indicates that an arrival has

occurred to the queue (or service facility). Arrows emanating from the line indicate the departure of

a customer from the queue (or service facility). In this figure we see that the customer + k È I arrives

before customer +Sk enters service; only when +¸k departs from service may +¸k È I enter service and,

of course, these two events occur simultaneously. Notice that when +�k È � enters the system he finds it

empty and so immediately proceeds through an empty queue directly into the service facility. In this

digram we have also shown the waiting time and the system time for +�k . Thus, as time proceeds we

can identify the number of customers in the system [y�Ë� � , the unfinished work ;j�Ë� � , and also idle and

busy periods.

Finally, we discuss a basic parameter ( , which is commonly referred to as the utilization factor.

The utilization factor is the ratio which “work” enters the system to the maximum rate (capacity) at

which the system can perform this work; the work an arriving customer brings into the system equals
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the number of seconds of service he requires. So, in the case of a single server system, the definition

for ( becomes ( �$ (average arrival rate of customers) I (average service time) $¼G ¦ (5.18)

In the case of multiple servers (say, + servers) we have( �$ G ¦+ (5.19)

The rate at which work enters the system is sometimes referred to as the traffic intensity of the system

and is usually expressed in Erlangs; in a single-server system the utilization factor is equal to the traffic

intensity whereas for ( + ) multiple servers, the traffic intensity equals +J( . So long as �	· (áÏ 
 , the( may be interpreted as (j$�ÕÖ± fraction of busy serves ³ (5.20)

5.3 Derivation of Little’s result

In a general queueing system one expects that when the number of customers is large then so is the

waiting time. In this section we derive a very simple relationship between the mean number in the

queueing system, the mean arrival rate of customers to that system, and the mean system time for

customers.

We introduce some notation:

� �Ë� � �$ number of arrivals in � ��& � � (5.21)K �Ë� � �$ number of departures in � ��& � � (5.22)

A sample path of the stochastic variables � �Ë� � and
K �Ë� � is shown in Figure 5.3.

Clearly [m�Ë� � , the number in the system at time � , must be given by

[m�Ë� � $ � �Ë� ��� K �Ë� � (5.23)

On the other hand, the total area between these two curves up to some point, say � , represents the total

time all customers have spent in the system (measured in units customer-seconds) during the interval
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Figure 5.3: Arrivals and departures.

� ��& � � ; let us denote this cumulative area by U��Ë� � . Moreover, let G ` be defined as the average arrival

rate (customers per second) during the interval � ��& � � ; that is;

G ` �$ � �Ë� �� (5.24)

We may define C ` as the system time per customer averaged over all customers in the interval� ��& � � ; since U��Ë� � represents the accumulated customer-seconds up to time � , we may divide by the

number of arrivals up to that point to obtain: C ` $ Uý�Ë� �� �Ë� � (5.25)

Lastly, let us define [ ` as the average number of customers in the queueing system during the interval� ��& � � ; this may be obtained by dividing the accumulated number of customer-seconds by the total

interval length � :
[ ` $ Uý�Ë� �� (5.26)

From these last three equations we see

[ ` $¼G ` C ` (5.27)
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Let us now assume that our queueing system is such that the following limits exists as �V� P :

G	$W�


�` â Ì G ` (5.28)C¨$W�


�` â Ì C ` (5.29)

These two limits corresponds to our former definitions for G and C representing the average arrival

rate and the average system time. If the limits exists, so must the limit for [ ` , so we have

[ $¼GXC (5.30)

This is the result we are seeking and it is known as Little’s result.

Little’s result also holds for the average number of customers in the queue [ n , average arrival rateG and average waiting time in the queue L :

[ n $¼G�L (5.31)

Finally, note that its always true that C�$ ¦ � L ( (5.32)

5.4 M/M/C queueing system

In this section we evaluate the performance of queueing system with + parallel servers and infinite

waiting room operating under the first-come-first-served queueing discipline. We assume the system

is offered customers from a single customer category with Poisson customer arrival process and expo-

nentially distributed service times. The interarrival time have a exponential distribution according with

mean arrival rate G [s ��I ] and the mean service time is 
qØ J [s]. Each customer is assumed to require

1 unit of capacity. The state of the system is denoted by � and represents the number of customers

present in the system (in service and in queue).

With the assumptions on exponential service time distribution and Poisson customer arrivals we

observe that

� we only need to look at the transition between time � and � �/Y � for Y �#� � .
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Figure 5.4: State transition diagram for infinite customer queueing system.

� if there are � customers in the queue at time � �]Y � , then there could have be only �
�T
'&�� or�Ö�¨
 customers at time �
With these assumptions we can write:

6 � �Ë� ��Y � � $56 � �Ë� � ±w� 
�� G Y � ��� J Y �<G Y � ³�� 6 I �Ë� � ± J Y ��� 
�� G Y � �r³6 k �Ë� ��Y � � $56 k ±w� 
�� � J Y � � � 
d� G Y � ���m� J Y ��G Y � ³Ë�� 6 k È I ±w� �Ö�¨
q� J Y ��� 
�� G Y � �r³�� 6 k ��I ±}G Y ��� 
�� � � �Q
q� J Y � �r³]& 
�·¹��· + &6�k��Ë� ��Y � � $56�k�±w� 
�� + J Y � � � 
d� G Y � ��� + J Y ��G Y � ³Ë�� 6�k È I ±w�]+ �¨
q� J Y �N� 
�� G Y � �r³�� 6�k ��I ±}G Y �N� 
�� + J Y � �r³]& � �Å+ (
According to Taylor series we have

6�k��Ë� ��Y � � $56�k��Ë� �K� d
dt
6�k��Ë� �^Y � (5.33)

Combining the two equations above and letting Y �V� � we have

d
dt 6 � �Ë� � $ � G¯6 � �Ë� �K� J�6 I �Ë� �
d
dt 6�k��Ë� � $ � �]G �y� J � 6�k��Ë� �¿� G'6�k ��I �Ë� ��� � �	�V
q� J�6�k È I �Ë� �F& 
�·¹��· + &
d
dt 6�k��Ë� � $ � �]G � +�J � 6�k��Ë� �K� G¯6�k ��I �Ë� ��� �]+ �¨
q� J�6�k È I �Ë� �F&´� �Å+ (

These are the differential-difference equations which describe the state of the system as function of

time. We are interested in steady state behavior so we set d
dt 6�k��Ë� � $ � for all � , which yields
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� $ � G ¾ � � J ¾ I� $ � �]G �y� J �B¾ k � G ¾ k ��I � � �Ö�¨
q� J ¾ k È I & 
�·¹��· + &� $ � �]G � +�J �B¾ k � G ¾ k ��I � �]+ �¨
q� J ¾ k È I &´� �V+
From these equations we have

G ¾ � $ J ¾ IG ¾ I $ ç J ¾ �
...

...
...G ¾ � ��I $ + J ¾ �G ¾ � $ + J ¾ � È I

...
...

...

(5.34)

As (-$ >� @ is the offered traffic, we get:

¾ kj$ ãäæå ¾ � � �Q_ �
`kba � · + &¾ � ��cd_ `� a � �Å+ (
All probabilities have to sum up to one:

Ì~k¯g � ¾ k $ 
 (5.35)

Therefore:

¾ � $ e � ��I~k'g � �]+f( � k�ýü � �]+J( � �+ ü � 
�� ( �hg ��I (5.36)

Inserting the expression for ¾ � in (5.35) yields Erlang’s C formula:

=Ö� delay � $ Ì~k¯g � ¾ k-$ �]+f( � �+ ü � 
h� ( � I e � ��I~k¯g � �]+J( � k�ýü � �]+J( � �+ ü � 
d� ( �hg ��I (5.37)

The average number of customers in the queue, [ n , is given by:

[ n $ ¾ � �]+f( � � (+ ü � 
d� ( � � (5.38)
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The average time in the queue, L , is given by Little’s formula:

L $ [ nG (5.39)

The average time in the system, C , is obtained from:C¨$ L � 
J (5.40)

The average number of customers in the system, [ , is given by Little’s formula:

[ $¼GdC¨$¨[ n � GJ (5.41)

5.5 M/M/C/* loss system

In this section we evaluate the performance of loss system with + parallel servers and no waiting room

operating under the first-come-first-served queueing discipline. We assume the system is offered calls

from a single call category with Poisson call arrival process and exponentially distributed service

times. The interarrival time have a exponential distribution according with mean arrival rate G [s ��I ]
and the mean service time is 
qØ J [s]. Each call is assumed to require 1 unit of capacity. The state of

the system is denoted by � and represents the number of busy servers.

CC−1210 Z
[ � : ��

ZZ \�\�\
Figure 5.5: State transition diagram for customer loss system.

By the same way as in the previous section we obtain the differential equations:

d
dt
6 k �Ë� � $ � �]G �y� J � 6 k �Ë� �K� G¯6 k ��I �Ë� �K� � ���¨
q� J�6 k È I �Ë� � (5.42)

d
dt
6 � �Ë� � $ � G'6 � �Ë� �K� J�6 I �Ë� � (5.43)
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We are interested in steady state behavior so we set d
dt 6 k �Ë� � $ � for all � , which yields

� $ � �]G �y� J �B¾ k � G ¾ k ��I � � �Ö�¨
q� J ¾ k È I (5.44)� $ � G ¾ � � J ¾ I (5.45)

Hence, the probabilities ¾ k are

¾ I $ >@ ¾ � (5.46)¾ � $ � > È @ �Sij)khl � > khl� @ $ >hm� @ ¾ � (5.47)¾�n $ � > È � @ � i mm j m kol � > ij khln @ $ >qp� @ p ¾ � (5.48)¾ � $ � > È n @ �Qi pr j p khl � > i mj m kol� @ $ G �s ü J � ¾ � (5.49)

... (5.50)¾ kj$ õ�t kYcg I >Y @ ö ¾ � $ 
�ýü�u GJwv k ¾ � (5.51)

Normalization of the probabilities, Ð �k¯g � ¾ k-$ 
 , yields

�~k¯g �

�ýü u GJ v k ¾ � $ 
 (5.52)

resulting in the empty system probability ¾ �
¾ � $ 
Ð �k¯g � Ikba�x >@Qy k (5.53)

A customer which find a system with + busy servers must be rejected. Hence, the customer

blocking probability, ÕÖ�]+ & ( � , where (-$¼G Ø J , is

ÕÖ�]+ & ( � $ I� a ( �Ð �k'g � Ik)a ( k (5.54)

which also is known as the Erlang blocking formula.
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5.6 GI/M/C queueing system

5.6.1 Introduction

In this section we evaluate the performance of queueing system with + parallel servers and an infi-

nite waiting room operating under the first-come-first-served queueing discipline. The presentation

is based on Kleinrock [49]. We assume the system is offered calls from a single call category with

renewal call arrival process and exponentially distributed service times. The interarrival time have a

general distribution according to Âj�Ë� � and the mean service time is 
qØ J [s]. Each call is assumed to

require 1 unit of capacity throughout its holding time.

5.6.2 The embedded Markov chain method

A one-dimensional embedded Markov chain can be defined at the arrival instants. Let Ò k be the

number of customers found upon arrival of the � th customer. Then Ò k is a one-dimensional embedded

Markov chain with infinite countable state space

Ò $�%_¦ Í ¦ $ ��&_
'&�(�(�( * ( (5.55)

Let z¯k be a stochastic process of discrete time � $ 
'& ç &�(�(�( representing the number of customers

served between the arrival of the � � �Q
q� th and the � th customer. Then

Ò-k È I $VÒ-k �¨
d� z'k È I ( (5.56)

We must now calculate the state transition probabilities associated with this Markov chain, and so we

define

6�Y}8h$¨=0± Ò-k È I $¹/ þ Ò-kt$¨Z ³ (5.57)

It is clear that 6�Y}8 is merely the probability that Z � 
�� / customers are served during an interarrival

time. It is further clear that

6�Yæ8�$ � for /$�QZ �¨
 (5.58)
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since there are at most Z �Ö
 customers present between the arrival of the � th and the � �ó�Ö
q� th customer.

The Markov chain has transitions such as shown in Figure 5.6.

{}|�~ {}|�[ ���4�~� ���4� {V��[ {#��~
� Y � � Y C Y ���

� Y C Y È I
� Y I

� Y C Y ��I
� YÞY
{

Figure 5.6: State-transition-probability diagram for the 9 ô Ø è Ø + embedded Markov chain.

For the system to be ergodic we require that the utilization factor (ÖÏ 
 , where(-$ G+ J (5.59)

In the ergodic case we are assured that an equilibrium probability distribution will exist describing the

number present at the arrival instants. Thus we define

M u $	�

��k â Ì =0± Ò-kt$�Ó ³ (5.60)

and it is this probability we seek for the 9�ô Ø è Ø + system.

Transition probabilities

Our first task is to find the one-step transition probabilities. We consider four regions in the �ËZ & / �
plane:

1. Z ��
 ÏÄ/ ,
2. / · Z �¨
�· + ,

3. + · / · Z �¨
'& ZSÿV+ ,
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4. /ÖÏÅ+ Ï¹Z �¨
 .
For region 1 we already know that 6�Y}8�$ � for Z �¨
 ÏÄ/ . For region 2 we have

6�Y}8h$�� Ì� �� Z �¨
/ �� ± 
��ÄÜ � @ ` ³ Y È I�� 8 Ü � 8 @ `1� Âj�Ë� �F& / · Z �¨
�· + ( (5.61)

For region 3 we have

6 Yæ8 $ � Ì� �]+�J�� � Y È I�� 8�ËZ ��
�� / �Fü Ü � � @ ` � Â �Ë� �F& + · / · Z ��
'& ZSÿÅ+ ( (5.62)

For region 4 we have

6�Yæ8�$ � Ì� �� + / �� Ü � 8 @ ` I�� � `� �]+ J�A � Y � ��ËZ � + �Fü � Ü � @ | �ÄÜ � @ ` � � � 8 +�J � A)� � Â �Ë� �F& /tÏÅ+ÎÏ¹Z ��
'(
(5.63)

Having established the form for our one-step transition probabilities we may place them in the transi-

tion matrix

� $

���������������������������

6 ��� 6 � I � �6 I � 6 I�I 6 Ir� � (�(�(6 � � 6 � I 6 ��� 6 � n
...

...6 � ��� C � 6 � ��� C I (�(�( 6 � ��� C � ��I � � � (�(�(6 � ��I C � 6 � ��I C I (�(�( 6 � ��I C � ��I ! � � � (�(�(6 � C � 6 � C I (�(�( 6 � C � ��I ! I ! � � (�(�(
...6 � È k C � 6 � È k C I (�(�( 6 � È k C � ��I !9k È I !9k (�(�( ! � � (�(�(
...

...

����������������������������
(5.64)

Calculation of equilibrium distribution

Define for Ó�ÿÅ+ �T
 :
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[ u �Ë� � = number of arrival instants in the interval � ��& � � in which the arriving customer

finds the system in state Õ u , given 0 customers at time �ý$ � .ñ u $ÆÕÖ± number of times state Õ u�È I is reached between two successive visits to stateÕ u ].
It can be shown that ñ u is independent of Ó and that ñ must be the limit of the ratio of the number of

times we find ourselves in state Õ u�È I to the number of times we find ourselves in state Õ u ; thus we

may write

ñ§$W�


�` â Ì [ uNÈ I �Ë� �[ u �Ë� � & Ó ÿV+ �Q
'( (5.65)

It can be shown that the limit (5.65) exists. However, this limit must be the ratio of the steady state

probability of finding the system in state Õ u�È I to the probability of finding it in state Õ u . Conse-

quently, we have established

M u�È IM u $�ñ & Ó ÿÅ+ �Q
'( (5.66)

The solution to this last set of equations is clearly

M u $�.§ñ u & Ó�ÿÅ+ �Q
'& (5.67)

for some constant K. This is a basic result, which says that the distribution of the number of customers

found at the arrival instants is geometric for the case Ó�ÿÅ+ �Q
 . It remains for us to find ñ and . , as

well as M u for Ó�ÏÅ+ �Q
 .
We have for Ó�ÿV+ :

M u $¨.2ñ u $ Ì~ Ycg � M_YÞ6 Y u $
Ì~Ywg u ��I M_Y76 Y u $

Ì~Ycg u ��I .2ñ Y ! Y È I�� u ( (5.68)

where !9kj$y6�Y C Y È I�� k-$ � Ì� �]+�J�� � k�ýü Ü � � @ ` � Â �Ë� �F& �t·¹� · Z �¨
d� + & + · Z ( (5.69)

Canceling the constant . as well as the common factors we have

ñ
$ Ì~Ycg u ��I ñ Y È I�� u ! Y È I�� u ( (5.70)
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Changing the index of summation we finally have

ñ
$ Ì~k'g � ñ k !9k ( (5.71)

Inserting the expression for !�k gives:

ñ
$ Ì~k¯g � ñ k � Ì` g � �]+ J�� � k�ýü Ü � � @ ` � Âj�Ë� � $ � Ì` g � Ü � � � @ � � @o� � ` � Âj�Ë� �F( (5.72)

It can be shown that so long as (	Ï 
 then there is a unique real solution for ñ in the range � Ï¹ñÄÏ 
 .
The equilibrium distribution is of the form� $¨.2ñ � ��I ± × � & × I &�(�(�()& × � ��� &_
'& ñ & ñ � &�(�(�(}³ (5.73)

where × u $ M u ñ I�� �. & Ó0$ ��&_
'&�(�(�(4& + � ç (5.74)

Furthermore, for convenience we define

1§$¨.2ñ � ��I (5.75)

In terms of our one-step transition probabilities we have× u $ Ì~` g u ��I × Y76 Y u & Ót$ ��&_
'&�(�(�(4& + � ç & (5.76)

where we extend the definition of
× u such that

× Y�$�ñ Y � � È I for ZSÿÅ+ �2
 . The tail of the sum above

may be evaluated to give

× u $
� ���~Ycg u ��I × YÞ6 Y u �

Ì~Ycg � ��I ñ Y È I�� � 6 Y u (5.77)

Solving for
× u ��I , the lower-order term present, we have

× u ��I $ 
6 u ��I C u
e × u � � ���~ Ycg u × Y76 Y u �

Ì~Ycg � ��I ñ Y È I�� � 6 Y u g ÓÖ$ 
'& ç &�(�(�()& + �Q
'( (5.78)

The set of equations (5.78) is a triangular set in the unknowns
× u ; in particular we may start with the

fact that
× � ��I $ 
 and then solve recursively over the range ÓÄ$ + ��
'& + � ç &�(�(�(q&_
'&<� in order.
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Finally we may use the conservation of probability to evaluate the constant 1 as

1
$ � ���~
u g � × u � 1

Ì~
u g � ��I ñ u �

� È I $ 
 (5.79)

1
$ 
qØ ± 

h� ñ �
� ���~
u g � × u ³ (5.80)

Calculation of performance measures

The probability that an arriving will be delayed the 9 ô Ø è Ø + queue is

=0� delay � $ .2ñ �
d� ñ (5.81)

The average waiting time for the 9�ô Ø è Ø + queue is

L $ .§ñ �+ J°� 
d� ñ � � $ 1Kñ+�J°� 
d� ñ � � (5.82)

The delay distribution for the 9�ô Ø è Ø + queue is

L �BA � $ 
�� ñ Ü � � @ � I�� � � | Ø ± 
S� � 
�� ñ � � ���~
u g � × u ³]& A�ÿ ��( (5.83)

5.7 M/G/1 queueing system

5.7.1 Introduction

In this section we evaluate the performance of queueing system with one server and an infinite waiting

room operating under the first-come-first-served queueing discipline. The presentation is based on

Kleinrock [49]. We assume the system is offered customers from a single customer category with

Poisson customer arrival process and generally distributed service times. The interarrival time have

an exponential distribution with mean interarrival time 
qØ G [s] and the mean service time is 
qØ J [s].

Each customer is assumed to require 1 unit of capacity throughout its service time.

5.7.2 The embedded Markov chain method

A one-dimensional embedded Markov chain can be defined at the departure instants. Let Òák be

the number of customers found left behind the departure of the � th customer. Then Ò k is a one-

dimensional embedded Markov chain with infinite countable state space
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Ò $�%_¦ Í ¦ $ ��&_
'&�(�(�( * & (5.84)

Let z k be a stochastic process of discrete time � $ 
'& ç &�(�(�( representing the number of customers

arriving during service of the � th customer. Then

Ò k È I $
ãäæå Ò-k �Q
U� z'k È I & Ò-k&� �z'k È I & Ò-kt$ � (5.85)

Let us introduce the shifted discrete step function

Y<��� $ ãä å 
'& Ót$ 
'& ç &�(�(�(��& Ó ·Q� (5.86)

Hence, we may write the system equation as

Ò-k È I $VÒ-k �'Y=� ` � z'k È I & (5.87)

We define the one-step transition probabilities

6�Y}8h$�=0± Ò-k È I $Q/ þ Ò-k0$VZ ³ (5.88)

Since these transitions are observed only at departures, it is clear that Ò k È I ÏQÒ-k � 
 is an impossible

situation; on the other hand, ÒÖk È I ÿ�Ò-k �Å
 is possible for all values due to the arrivals z²k È I . It is

easy to see that the matrix of transition probabilities � $ ± 6¿Y}8 ³]& �ËZ & /-$ ��&_
'& ç &�(�(�( � , takes the form:

� $ ��������������
� � � I � � �}n (�(�(� � � I � � �}n (�(�(� � � � I � � (�(�(� � � � � I (�(�(� � � � � (�(�(
...

...
...

...
. . .

���������������
(5.89)
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where � u $¨=0± z'k È I $�Ó ³ .
Let us now calculate � u . The service time for the � th customer is independent of � and distributed

according to ; �Ë¦ � . Therefore, z�k , the number of arrivals during the service time ¦Kk depends only upon

the duration of ¦�k and not upon � at all. We may therefore dispense with the subscripts on z�k and ¦�k ,

replacing them with random variables ÷z and ÷¦ so that we may write =Ö± ¦¿k · ¦ ³ $ =0± ÷¦ · ¦ ³ $ ; �Ë¦ �
and =0± z¯k-$�Ó ³ $�=0± ÷z-$¼Ó ³ $ � u . We have by the total law of probability

� u $¨=0± ÷zt$�Ó ³ $ � Ì� =0± ÷zt$�Ó & ¦2Ï ÷¦ · ¦ � � ¦ ³ � ¦ (5.90)

By conditional probabilities we further have

� u $ � Ì� =0± ÷zt$�Ó þ ÷¦ $¨¦ ³�? �Ë¦ � � ¦ (5.91)

where ? �Ë¦ � $ � ; �Ë¦ ��Ø � ¦ is the pdf for the service time. Since we have a Poisson arrival process, we

have

� u $ � Ì� �]GH¦ � uÓ ü Ü � > ú ? �Ë¦ � � ¦ (5.92)

Our Markov chain is ergodic if the utilization factor ( fulfills(j$¼G ¦
Ï 
'& (5.93)

where ¦ denote the average service time.

The mean queue length

Im this section we derive the Pollaczek-Khinchin formula for the mean value of the limiting queue

length. In particular, we define

÷Ò $	��

�k â Ì Ò-k (5.94)

Assume the / th moment of Ò0k exists in the limit as � goes to infinity independent of � :�


�k â Ì ÕÖ± Ò 8k ³ $¨Õ	± ÷Ò 8k ³ (5.95)
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Previously we defined the system equation as

Ò-k È I $VÒ-k �'Y=� ` � z'k È I & (5.96)

Taking the expectation we get

Õ	± Ò-k È I ³ $VÕ	± Ò-k ³�� ÕÖ± Y=� ` ³�� ÕÖ± z'k È I ³ (5.97)

Using (5.95) we have, in the limit as � � P ,

Õ	± ÷Ò ³ $�ÕÖ± ÷Ò ³�� ÕÖ± Y��� ³�� Õ	± ÷z ³ (5.98)

Alas, the expectation we are seeking drops out of the equation, which instead yields:

ÕÖ± Y �� ³ $¨ÕÖ± ÷z ³ (5.99)

What insight does this last equation provide us? We have by definition that

Õ	± ÷z ³ $ average number of arrivals in a service time (5.100)

Let us now interpret the left-hand side of (5.99). By definition we have

ÕÖ± Y��� ³ $ Ì~
u g � Y u =Ö± ÷Ò $�Ó ³ $ � =0± ÷Ò $ �4³��¨
 =0± ÷ÒW� �4³ $�=0± ÷Ò�� �4³ (5.101)

Equation (5.101) may also be written as

ÕÖ± Y �� ³ $¨=Ö± busy system ³ $¨=0± delay ³ (5.102)

And from our definition of utilization factor we further have

=0± busy system ³ $"( (5.103)

Thus from the above equations we conclude that

Õ	± ÷z ³ $"( (5.104)
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We now return to the task of solving for the expected value of ÷Ò . Forming the first moment of

the system equation yielded interesting results but failed to give the desired expectation. Let us now

attempt to find this value by first squaring the system equation and the taking the expectations as

follows:

Ò �k È I $VÒ �k ��Y �� ` � z �k È I � ç Ò-k Y<� ` � ç Ò-k)z'k È I � ç Y=� ` z'k È I (5.105)

From the definition of the shifted discrete step function we have � Y � ` �B� $ Y � ` and also Ò k Y � ` $Ò k . Applying this to (5.105) and taking expectations, we have

Õ	± Ò �k È I ³ $¨Õ	± Ò �k ³�� ÕÖ± Y=� ` ³�� ÕÖ± z �k È I ³�� ç ÕÖ± Ò-k ³�� ç ÕÖ± Ò-k�z'k È I ³�� ç ÕÖ± Y=� ` z'k È I ³ (5.106)

Taking the limit as � goes to infinity, and using our limit assumption (5.95) we have

� $�ÕÖ± Y �� ³�� ÕÖ± ÷z � ³�� ç Õ	± ÷Ò ³�� ç ÕÖ± ÷Ò ³ ÕÖ± ÷z ³�� ç ÕÖ± Y �� ³ Õ	± ÷z ³ (5.107)

Using equations (5.99) and (5.104) we obtain as an intermediate result for the expectation of ÷Ò :

ÕÖ± ÷Ò ³ $"( � ÕÖ± ÷z ��³�� ÕÖ± ÷z ³ç � 
�� ( � (5.108)

The only unknown here is ÕÖ± ÷z � ³ .
Let us solve not only for the second moment of ÷z but, in fact, let us describe a method for obtaining

all the moments. Equation (5.92) gives an expression for � u $ò=0± ÷zÄ$ Ó ³ . Using this equation we

calculate the moments as follows. Let us define the ù -transform for the random variable ÷z as

E � ù²� �$¨ÕÖ± ù �� ³ $ Ì~
u g � =Ö± ÷zj$�Ó ³ ù u (5.109)

Forming E � ù²� from equations (5.92) and (5.109) we have

E � ù²� $ Ì~
u g � � Ì� �]G9¦ � uÓ ü Ü � > ú ? �Ë¦ � � ¦ ù u (5.110)

We may interchange the order of the summation and integration:

E � ù²� $ � Ì� Ü � > ú�� Ì~
u g � �]GH¦

ù²� uÓ ü   ? �Ë¦ � � ¦ $ � Ì� Ü � � > � > v�� ú ? �Ë¦ � � ¦ (5.111)
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At this point we define the Laplace transform ; É �Ô � for the service time pdf as

; É �Ô � �$ � Ì� Ü � , ú ? �Ë¦ � � ¦ (5.112)

We note that equation (5.111) is of this form, with the complex variable  replaced by G � G ù , and so

we recognize the important result that

E � ù²� $ ; É �]G � G ù²� (5.113)

Various derivatives of ù -transforms evaluated at ù $ 
 give the various moments of the random

variable under consideration. Similarly, the appropriate derivative of the Laplace transform evaluated

at its argument  �$ � also give rise to moments. In particular,

; É � u � � ��� �$ � � ��¡ � , �� , � ééé , g � $ � �O
q� u Õ	± ÷¦ u ³ (5.114)E � I � � 
q� �$ ��¢ � v��� v ééé vag I $ Õ	± ÷z ³ (5.115)E � � � � 
q� �$ � m ¢ � v��� v m ééé vFg I $ Õ	± ÷z � ³�� ÕÖ± ÷z ³ (5.116)

In order to simplify the notation for these limiting derivative operations, we have used the more usual

supscript notation with the argument replace by its limit. Furhermore, we now resort to the overbar

notation to denote expected value of the random variable below the bar. Thus equation (5.114) -

(5.116) become

; É � u � � ��� $ � ��
q� u ¦ u (5.117)E � I � � 
q� $ z (5.118)E � � � � 
q� $ z � � z (5.119)

Form the conservation of probability we have

; É � ��� $ E � 
q� $ 
 (5.120)

Taking the appropriate derivative of (5.113) we have� E � ù²�� ù $ � ; É �]G � G ù²�� ù (5.121)

The right-hand side can be written



86 CHAPTER 5. QUEUEING THEORY� ; É'�]G � G ù��� ù $ � ; É'�]G � G ù��� �]G � G ù²� � �]G � G ù²�� ù $ � G � ; É'�BA �� A (5.122)

where At$¼G � G ù (5.123)

Setting ù $ 
 in (5.121) we have

E � I � � 
q� $ � G � ; É'�BA �� A éééé vag I (5.124)

But from equation (5.123) the case ù $ 
 is the case At$ � , and so we have

E � I � � 
q� $ � G ; É � I � � ��� (5.125)

Combining equations (5.114) and (5.124) we finally havezj$ G ¦ (5.126)

But G ¦�$£( and we have once again established that zT$£( . We may continue to pick up higher

moments by differentiating equation (5.121) once again to obtain� ��E � ù²�� ù � $ � �N; É'�]G � G ù²�� ù � (5.127)

Using the first derivative of ; É �BA � we now form the second derivative as follows:� � ; É �]G � G ù²�� ù � $ �� ù � � G � ; É �BA �� A � $ � G � � ; É �BA �� A � � A� ù (5.128)

or � ��; É'�]G � G ù��� ù � $¼G � � ��; É4�BA �� A (5.129)

Setting ù equal to 1 in equation (5.121) we have

E � � � � 
q� $ G � ; É � � � � ��� (5.130)
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Thus from earlier results in equation (5.114) we obtainz � � z-$ G � ¦ � (5.131)

Returning to our intermediate result (5.108) we apply equation (5.131) to obtain

ÒÁ$"( � ( � G � ¦ �ç � 
�� ( � (5.132)

Let us rewrite this result in terms of + �{ $¨ñ �{ Ø ¦ � , the squared coefficient of variation for service time:

Ò $"( � ( � � 
S� + �{ �ç � 
�� ( � (5.133)

This is the well-known formula for the average number of customers in a
è Ø 9 Ø�
 system and is

commonly referred to as the Pollaczek-Khinchin (P-K) mean-value formula.

According to Little’s result:

[ $¼GXC (5.134)

where C denotes the average time the customer spends in the the system and [ $ Ò . Thus we have

[Á$"( � ( � � 
S� + �{ �ç � 
�� ( � $¼GdC (5.135)

Solving for C we have C¨$ ¦ � ( ¦W� 
S� + �{ �ç � 
h� ( � (5.136)

This is easily interpreted. The average total time in the system is clearly the average time spent in

service plus the average time spent in the queue. Hence, the average waiting time in the queue is

L $ ( ¦W� 
S� + �{ �ç � 
h� ( � (5.137)

5.8 Fluid flow queueing system

5.8.1 Assumptions and notation

In this section we evaluate the performance of a fluid flow queueing system. The presentation is based

on Jacobsen and Dittman [39]. We assume the FCFS multiplexer is offered traffic from ¶ classes
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of ON/OFF sources. An ON/OFF source alternates between an active ON state, when it transmits

information at a peak rate, and a silent OFF state. The durations of the ON and OFF periods are

assumed to be exponentially distributed.

A traffic class Z is described by four parameters:� number of sources: [jY� average duration of the ON state: 
qØ�? Y [s]� average duration of the OFF state: 
qØ4* Y [s]� peak rate in the ON state: 6�Y [bps]

The intensity (rate) of transitions from the ON (OFF) state to the OFF (ON) state for a class Z
source is ? Y<� * Y � ± s ��I ³ . The mean rate for class Z is given by : YK$56�Y ^�¤^�¤ È { ¤ [bps].

The traffic descriptor (peak rate, mean rate, maximum burst size) can be enforced by two leaky

buckets or two token buckets, one supervising the peak rate and one supervising the mean rate and

the maximum burst size. It is widely believed, though the author have seen no formal mathematical

proof, that the worst case output from a leaky bucket or token bucket with respect to queue build up

is a periodic ON/OFF process in which the source is transmitting at peak as long as allowed and then

turns silent until it is able to transmit a maximum burst at peak again. From numerical experience it is

known that more variable ON and OFF period durations lead to larger queueing build up. Therefore

the cell loss ratio in the exponential distributed ON/OFF queue will be an upper bound on the cell

loss probability in the periodic ON/OFF queue. Hence, the ON � OFF intensity ? Y should be set to? YK$Ä6�Y Ø MBS. The OFF � ON intensity * Y should be set to * Y¿$ { ¤ i ¤\q¤ � i ¤ .
The data transmitted by the Ð [OY sources is received by a finite buffer of size ; Mbits with a

maximum output rate of + bps. The buffer is modelled as a fluid reservoir with a hole in the bottom

and arriving information is modelled as a fluid running into the reservoir. If 6êYlk is the input rate, and¦ is the buffer content, then the change in buffer content is given by

� ¦ Ø � �°$
ã¥¥¥¥¥¥¥¥¥ä ¥¥¥¥¥¥¥¥¥å
� when ¦�$ � and 6 Ylk ÏV+
6�Ylk � + when

ã¥¥¥ä ¥¥¥å ¦�$ � and 6�Ylk��Å+� Ï¹¦
Ï ;¦�$ ; and 6�Ylk	ÏÅ+� when ¦�$ ; and 6�Ylk��Å+ (5.138)
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The average input rate is Ð ?Ywg I ["Y76�Y * Y Ø � * Y ��? Y � and the load on the output is then given by

(j$ Ð ?Ycg I ["YA6�Y ^S¤^�¤ È { ¤+ (5.139)

We assume the average input rate to be smaller than the output capacity, i.e. (ÖÏ 
 .
Let Ó�Y denote the number of active sources in class Z , and ¦5$ �ÔÓ I &�(w(w(w& Ó ? � the state vector which

the sources are in. Let

# Í $3%h¦
$Î�ÔÓ I &�(w(w(w& Ó ? �UÍ��t· Ó�Y · [OY & Z�$ 
'&�(w(w(w&<¶ * (5.140)

denote the state space for the sources. # is of cardinality �>[ I �¨
q��§�§�§ �>[ ? �V
q� .
Vectors and matrices will appear in bold letter such that they can be distinguished from numbers,

functions etc.

Let ¨ $ �76 I &�(w(w(w& 6 ? � denotes the peak rate vector for the sources and by the scalar product of ¦ and©
we mean:

6�Ylkj$7¦ § ¨ $ ?~ Ycg I Ó¯YÞ6�Y (5.141)

which is the total input rate in state ¦ .

The assumption that the duration of the ON (OFF) state is exponential ensures that the transitions

between state in # are determined by a Markov chain, and this together with the fluid assumption

enables us to find the equilibrium buffer distribution as solution to a set of first order differential

equations.

A set of differential equations

For ¦ in # , �=� ��&<� Ï ¦¨Ï ; , let =�ª��Ë� & ¦ � denote the probability that at time � , the sources are in

state ¦ and the buffer content does not exceed ¦ . Due to the exponential assumption, at the next small

time interval �Ë� & � �7Y � � a source from class Z will switch from the OFF state to the ON state with

probability �>[�8 � Óq8 �«* 8 Y � �"¬ � Y � � , and a source from class Z will switch from the ON state to the

OFF state with probability Ó'8 ? 8 Y � �/¬ � Y � � . The probability of two or more changes is ¬ � Y � � . These

considerations yields the following expression:
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=�ª��Ë� ��Y � & ¦ � $ ?~ Ycg I �>["Y � Ó�Y �¨
q�«* Y Y ��= � u�­ C¯®¯®¯®æC u ¤ ��I C¯®¯®¯®æC u2° � �Ë� & ¦ �'Y ¦ �
?~ Ywg I �ÔÓ�Y ��
q�^? Y Y ��= � u ­�C¯®¯®¯®æC u ¤ È I C¯®¯®¯®æC u ° � �Ë� & ¦ �'Y ¦ �

� 
h� ?~ Ycg I �>["Y � Ó�Y �«* Y Y � � Ó¯Y ? Y Y � � =�ª��Ë� & ¦ �'Y ¦ � (5.142)

where Y ¦ $ � Ð ?Ywg I 6�YÔÓ¯Y � + �^Y � and where a function ±��Ë� � is written ¬ �Ë� � whenever ±��Ë� ��Ø �3� � for�²� � . Isolating terms containing =#ª on the left side, dividing by Y � and taking the limit Y �²� � ,
yields ³

=�ª³ � �Ë� & ¦ �K� � ?~ Ycg I 6�Y>Ó�Y � + �
³
=�ª³
¦ �Ë� & ¦ � $ � ?~ Ycg I ���>["Y � Ó¯Y �«* Y � Ó¯Y ? Y � =�ª��Ë� & ¦ �� ?~ Ycg I �>[OY � Ó�Y ��
q�«* YÔ= � u ­�C¯®¯®¯®æC u ¤ ��I C¯®¯®¯®æC u ° � �Ë� & ¦ �� ?~ Ycg I �ÔÓ Y �¨
q�^? Y = � u�­ C¯®¯®¯®æC u ¤ È I C¯®¯®¯®æC u2° � �Ë� & ¦ � (5.143)

We are only interested in the time independent equilibrium probabilitiesø�ª��Ë¦ � := equilibrium probability that the sources are in state ¦ and the buffer content does not

exceed ¦ and we therefore put

³
=#ª Ø ³ �°$ � and obtain

� ?~ Ycg I 6�YÔÓ¯Y � + �
³
ø�ª³
¦ �Ë¦ � $ � ?~ Ycg I �>["Y � Ó¯Y �«* Y � Ó¯Y ? Y � ø�ª��Ë¦ �� ?~ Ycg I �>[OY � Ó�Y ��
q�«* YÔø � u�­ C¯®¯®¯®æC u ¤ ��I C¯®¯®¯®æC u2° � �Ë¦ �� ?~ Ycg I �ÔÓ¯Y �¨
q�^? YÔø � u ­�C¯®¯®¯®æC u ¤ È I C¯®¯®¯®æC u ° � �Ë¦ � (5.144)

where ø�ª Í $ � when Ó�Y is not in % ��&_
'&�(w(w(w& ["Y<* . Equation (5.144) can be written as a �>[ I � 
q��§�§�§ �>[ ? �
q� dimensional matrix differential equatioń �)µ� ¦ $7¶ µ �Ë¦ � (5.145)

where

´
is a diagonal matrix with entry �·¦ & ¦ � equal to
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� ª-$ � ?~ Ycg I 6 Y Ó Y � + � (5.146)

and where entry �·¦ &�¸ý� in ¶ looks as follows:

: � ª C ª � $ � ?~ Ywg I �>["Y � Ó¯Y �«* Y � Ó�Y ? Y & for ¦ !
#: � ª C uq­ C¯®¯®¯®æC u ¤ ��I C¯®¯®¯®æC u ° � $Î�>[OY � Ó�Y ��
q�«* Y & for ¦ !
# (5.147): � ª C u�­ C¯®¯®¯®æC u ¤ È I C¯®¯®¯®æC u ° � $ �ÔÓ¯Y �¨
q�^? Y & for ¦ !
#
In both approaches to be presented it is necessary to be able to invert the matrix

´
. To ensure this, the

following technical assumption is needed:

+Î!�¹ ?~ Ycg I 6 Y Ó Y þ Ó Y is an integer º (5.148)

Equation (5.148) is a mild assumption and in the case where all the 6 Y ’s are multiples of 6 I the condi-

tion (5.148) is fulfilled whenever + is not a multiple integer of 6 I .
The (vector) solution to the matrix differential equation is:µ �Ë¦ �SÍ $ exp �

´
��I ¶3¦ � © � (5.149)

where
µ �Ë¦ � $3%qø�ª��Ë¦ � *hª ­ � and where the initial vector

© � is found from initial conditions.

The initial condition

Let »Qª denote the probability of the buffer being held at its maximum ; , and the sources being

in state ¦ . If ©hª denotes the overall probability of the sources being in state ¦ , then the following

expression is valid for »¼ª »Qª $¨©hª � lim úqâ � ø}ª��Ë¦ � (5.150)

where ©hª is to be calculated as:

©qª $ ?fYwg I=½ e ¤u ¤�¾ � ^�¤{ ¤ � u ¤� 
U� ^�¤{ ¤ � e ¤ (5.151)

Using this notation the initial condition is easy to formulate. When the input rate is larger than the

output rate the buffer cannot stay empty. Therefore:
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ø}ª�� ��� $ � when
?~ Ycg I Ó�YA6�Y��Å+ (5.152)

When the input rate is smaller than the output rate the buffer cannot stay at its maximum. There-

fore:

� $"»Qª $¨©hª � lim úqâ � ø}ª��Ë¦ � when
?~ Ywg I Ó Y 6 Y ÏÅ+ (5.153)

5.8.2 The solution

We seek fundamental solutions of the form

øÖ�Ë¦ � $"¿ÁÀXÂ¿� ù �·¦ � ¦ � �Ãª (5.154)

Inserting in the vector-matrix differential equation (5.145) yields:´
ù �·¦ � ¿ÁÀXÂW� ù �·¦ � ¦ � ��ª-$ ¶Ä¿ÁÀXÂê� ù �·¦ � ¦ � ��ªÅ ´ ��I ¶ ��ù �·¦ � ôÇÆ¿��ª $ �´

��I ¶ ��ª $ ù �·¦ � ��ª (5.155)

Hence, the matrix

´
��I ¶ has eigenvectors �Qª and eigenvalues ù �·¦ � , for ¦ !
# . Since the dimension

of

´
��I ¶ is equal to �>[ I �Q
q��§�§�§ �>[ ? �Q
q� , it is possible to use # as index set. With this notation the

solution will be a linear combination of fundamental solutions:µ �Ë¦ � $ ~ª ­ � * ª exp � ù �·¦ � ¦ � ��ª (5.156)

where the coefficients * ª must be found by means of the initial condition which in the eigenvalue

context reads:

� $¨ø�È�� ��� $ ?~ Ywg I * ª��]��ª � È when ¸É§ ¨/�Å+
©hÈ-$ lim úqâ � ø�È��Ë¦ � $ ?~ Ycg I * ª exp � ù �·¦ � ¦ � �]��ª � È when ¸É§ ¨mÏÅ+ (5.157)

where �]�Qª � È denotes the ¸ -th component of the ¦ -th eigenvector.
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In the infinite buffer case with identical sources, the initial condition is different, and it can be

formulated such that the corresponding coefficient matrix is a Van der Monde matrix, and an analytical

solution exist. However, in the finite buffer case with a more general input stream, no such approach

seems possible, and the equation must be solved numerically.

The eigenvalue for state ¦ can be found by solving the algebraic equation ºý� ù �·¦ ��� $Ê±�� ù �·¦ ���
where

ºý� ù �·¦ ��� $ ù �·¦ � �]+ � ?~ Ywg I [ Yç 6�Y �W� ?~ Ycg I [ Yç � * Y ��? Y � (5.158)±�� ù �·¦ ��� $ ?~ Ycg I �ÔÓ¯Y � ["Yç �ÁË � ù �·¦ � 6�Y ��? Y ��* Y � � � s * Y ? Y (5.159)

The eigenvector �Qª corresponding to the eigenvalue ù �·¦ � is given as the coefficients in the follow-

ing polynomial in ¶ variables:

6Qª $ ?fYcg I �Ë¦�Y � M_Y<� ù²��� u ¤ �Ë¦�Y �  _Y�� ù²��� e ¤ � u ¤ (5.160)

where

M_Y�� ù�� $ � � ù 6�Y ��? Y ��* Y �¿� Ë � ù 6�Y ��? Y ��* Y � � � s * Y ? Yç * Y (5.161)

 qY�� ù�� $ � � ù 6�Y ��? Y ��* Y �ý� Ë � ù 6�Y ��? Y ��* Y � � � s * Y ? Yç * Y (5.162)

The size of the state space for the fluid flow model is [ , $ t ?Ywg I �>["Y �

q� . As far as computational

complexity is concerned, is is dominated by the calculation of the coefficients * ª from the boundary

conditions. The coefficients are found by solving a set of [ , linear equations. This system of equations

can be solved by Gauss elimination or, which can be more efficient, by some iterative method. In

any case, the associated complexity is in the order of Ìt�>[ n, � . Hence, the complexity of the fluid

flow model increases very fast with increasing number of classes ¶ and increasing class sizes [�Y .
Therefore, the fluid flow model is only considered to be useful as a reference model, and not as a basis

for implementation of call admission control in real multi-service networks.
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5.8.3 Performance formulas

In this subsection we present formulas for the buffer overflow probability, packet loss ratio, and mean

waiting time in the queue.

The equilibrium distribution can be written asµ �Ë¦ � $ ~Í ª�Î ªÇÏ Ð�Ñ �ÓÒ * ª exp � ù �·¦ � ¦ � �Qª ��Ô (5.163)

where Ô is the equilibrium probability distribution.

The buffer overflow probability 9-�Ë¦ � $ P �1���¹¦ � can be written as

9-�Ë¦ � $ 
d� ~ª ­ � ø}ª��Ë¦ � $ 
h� ~ª ­ � ©qª � ~ª ­ � ~Í È Î È Ï Ð�Ñ �ÓÒ * È exp � ù � ¸W� ¦ � �]�QÈ � ª
$ � ~ª ­ � ~Í È Î È Ï Ð�Ñ �ÓÒ * È exp � ù � ¸W� ¦ � �]�QÈ � ª (5.164)

For large buffers the following asymptotic approximation is valid:9t�Ë¦ �V� �Õ*)Ö exp � ù �Ø× � ¦ � ~ª ­ � �]� Ö²� ª (5.165)

where ù �Ø× � is the largest negative eigenvalue and � Ö its associated eigenvector.

The overall loss ratio 6 @A� ,B, is defined as the fraction lost information to offered information. Loss

can only take place when the buffer is at maximum and the input rate is larger than the output rate.

Therefore we get:

6 @A� ,B, $ Ð Í ª)Î ªbÏ Ð�Ñ �ÓÒ �·¦ § ¨ � + � »�ªÐ ?Ycg I ["YÞ6�Y ^�¤^S¤ È { ¤ (5.166)

The buffer overflow probability is an upper bound of the packet loss ratio.

The distribution of queueing delay, ûy�Ë� � $ P ��C · � � , is given by:

ûy�Ë� � $ ~ª ­ � ø�ª��]+ � � ?~ Ycg I Ó Y(�YÔ["Y [ Y[ $ ~ª ­ � ø�ª��]+�� � ?~ Ycg I Ó Y(²YË[ (5.167)

where [ $¼Ð ?Ywg I ["Y denotes the total number of sources, and (HY�$ ^�¤^�¤ È { ¤ denotes the probability that

an class Z source is in the active state.
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This expression (5.167) can be used to determine the the 
"�V� quantile, D nBoqpzoqp YÞk4s�� ��� , of the

queueing delay distribution. The delay quantile can be found by searching for the value of � which

yields ûm�Ë� � $ 
d�Ä� .

The mean waiting time in the queue, J , is obtained as

J
$ � �ÓÙ��� � d ûy�Ë� � (5.168)

The variance of the waiting time in the queue, ñ � , is obtained as

ñ � $ � �ÓÙ��� �Ë� � J � � d ûy�Ë� � (5.169)

5.9 Bufferless fluid flow model

5.9.1 Exact solution

The exact packet loss ratio for a superposition of heterogeneous ON/OFF Markov fluid sources offered

to a bufferless multiplexer is:

6 @7� ,B, $ Ð Í ª)Î ªbÏ Ð�Ñ �ÓÒ �·¦ § ¨ � + � ©qªÐ ?Ycg I ["YÞ6�Y ^�¤^S¤ È { ¤ (5.170)

where ©hª is the equilibrium probability of being in state :

©qª $ ?fYwg I=½ e ¤u ¤�¾ � ^�¤{ ¤ � u ¤� 
U� ^�¤{ ¤ � e ¤ (5.171)

The computational complexity of the exact method may be estimated by [55]Ì e � ¶°� [ � ?fYcg I [ Y g where [ $ ?~ Ycg I [ Y (5.172)

Hence, the computational complexity increases geometrically with the size of the classes. Also this

method is considered to be too complex to serve as a basis for call admission control in real multi-

service networks.

5.9.2 Integrated Chernoff bound approximation

The cell loss ratio is defined as the mean loss rate, � , to mean offered rate,
è

: 6 @A� ,z, $Ñ� Ø è . The

mean rate
è

is given by
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è $ ?~ Ycg I 6�YB(�Y (5.173)

where ( Y $ ^S¤^�¤ È { ¤ denotes the activity factor for class Z .
In the following, we will consider an efficient approximative method for computing � [55]. Let C

be a sum of the peak rate 6�Y of individual sources:C�$ ?~ Ywg I ["YA6�Y (5.174)

If C · + , � is immediately zero by definition. If not, we may transform � into an integral from+ to C of the complementary distribution function, ø ? �Ë¦ � $ P �ËÒM�3¦ � , for a stochastic variable Ò
representing the input rate.

[Á$ � �ÛÚ� �Ë¦ � + � d ø ? �Ë¦ � $ �'Ú� ø ? �Ë¦ � d ¦ (5.175)

where ø ? �Ë¦ � obeys the Chernoff bound:

ø ? �Ë¦ � $¨=0�ËÒW�Å+ � $ � Ì� ºý�Ë¦ � d ¦ · � Ì� Ü , � ú � � � ºý�Ë¦ � d ¦ $ Ü � , � � Ì� Ü , ú ºý�Ë¦ � d ¦�$ ÕÖ± Ü , � ³Ü , �
(5.176)

Hence, we have

�ÅÏQÕÖ± Ü , � ³ �'Ú� Ü � , ú d ¦
Ï Õ	± Ü , � ³ Ü , � (5.177)

where we have replaced C with infinity to obtain the final inequality. Let ºý�Ô � denote the right hand

side of Equation (5.177), which is a parametric upper bound of � .

ºý�Ô � $ ÕÖ± Ü , � ³ Ü , � $ ÕÖ± Ü , � � � � � ³ (5.178)

If the input rate is larger than + , then ºý�Ô � has the minimum value at  $¨ É that is the root of the

equation

d log Õ	± Ü , � ³
d  � 
 � +3$ � (5.179)

Proof: The second derivative of ºý�Ô � is always positive for  �� � , and hence ºý�Ô � is a convex

function for  Ü� � . From Equation (5.178), �


� , â � ºý�Ô � $ P , and if CÝ�3+ , then �


� , â Ì ºý�Ô � $
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P . Function ºý�Ô � thus has the minimum value with respect to  .  É minimizing ºý�Ô � is the root of

d ºý�Ô ��Ø d  $ � . Applying Equation (5.178) yields Equation (5.179).

If C��Å+ , then we use the minimum value of ºý�Ô � as the best approximation of � . Thus we have

6 @A� ,B, $ Min , Ñ � ºý�Ô �è $ ºý�Ô )É �è (5.180)

This approximation is referred to as the Integrated Chernoff Bound (ICB).

The moment generating function Õ	± Ü , � ³ is obtained as

Õ	± Ü , � ³ $ ?fYcg I ÕÖ± Ü , � ¤ ³ $ ?fYcg I ±w� 
�� (²Y �K� (�Y Ü , \q¤ ³ e ¤ (5.181)

In conclusion, we have

�y$ t ?Ywg I ±w� 
�� (�Y ��� (�Y Ü , ¡ \q¤ ³ e ¤ É Ü , ¡ � (5.182)

where  4É is the root of the following equation:

?~ Ycg I ["Y·(�Y76�Y Ü , \h¤(²Y�� Ü , \h¤ �Q
q�K�V
 � 
 � +¼$ � (5.183)

This nonlinear equation can be solved by Newton’s method or the Interval halfing method. The above

two formulas reduces the 6 @7� ,B, computational complexity to order Ì0� ¶_� . The ICB method has suffi-

ciently low complexity to serve as the basis for call admission control in real multi-service networks.

An alternative to the ICB method is the Integrated Large Deviation (ILD) method, which provides

slightly tighter cell loss ratio bounds while having the same computational complexity.
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Chapter 6

Queueing networks

6.1 Introduction

We have so far considered Markovian systems in which each customer was demanding a single service

operation from the system. We may refer to this as a “single-node” system. In this chapter we are

concerned with multiple-node systems in which a customer requires service at more than one station

(node). Thus we may think of a network of nodes, each of which is a service center (perhaps with

multiple servers at some of the nodes) and each with a storage room for queues to form. Customers

enter the system at various points, queue for service, and upon departure from a given node then

proceed to some other node, there to receive additional service. A packet-switched network with

packet queues in the routers is an example of a queueing network.

1 2
Z

Figure 6.1: A two-node tandem network.

A number of new considerations emerge when one considers networks. For example, the topolog-

ical structure of the network is important since it describes the permissible transitions between nodes.

Also the paths taken by individual customers must somehow be described. Of great significance is the

nature of stochastic flow in terms of the basic stochastic processes describing that flow; for example,

in the case of a tandem queue, customers departing from node Z immediately enter node Z � 
 , we

see that the inter-departure times from the former generate the interarrival times to the latter. Let us

99
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for the moment consider the simple two-node tandem network shown in Figure 6.1. Each oval in that

figure describes a queueing system consisting of a queue and server(s); within each oval is given the

node number. (It is important not to confuse these physical network diagrams with the abstract state-

transition-rate diagrams we have seen earlier.) For the moment let us assume that a Poisson process

generates the arrivals to the system at rate G , all of which enter node one; further assume that node one

consists of a single exponential server a rate J . Thus node one is exactly an M/M/1 queueing system.

As we will assume that node two has a single exponential server also of rate J . The basic question is

to solve for the interarrival time distribution feeding node two; this certainly will be equivalent to the

interdeparture time distribution of node one. Let
� �Ë� � be the pdf describing the interdeparture process

from node one and as usual let its Laplace transform be denoted by D É �Ô � . Let us now calculateD É'�Ô � . When a customer departs from node one either a second customer is available in the queue

and ready to be taken into service immediately or the queue is empty. In the first case, the time until

this next customer departs from node one will be distributed exactly as the service time and in that

case we will have

D É �Ô ��þ node one nonempty $ ; É �Ô � (6.1)

On the other hand, if the node is empty this first customer’s departure then we must wait for the sum of

two intervals, the first being the time until the second customer arrives and the next being his service

time; since these two intervals are independently distributed then the PDP of the sum must be the

convolution of the pdf’s for each. Certainly then the transform of the sum pdf will be the product of

the transforms of the individual pdfs and so we have

D É �Ô ��þ node one empty $ G � G ; É �Ô � (6.2)

where we have given the explicit expression for the transform of the interarrival time density. Since

we have an exponential server we may also write ; É �Ô � $VJ Ø �Ô � J � ; furthermore the probability of a

departure leaving behind an empty system is the same as the probability of an arrival finding an empty

system, namely 
K� ( . This permits is to write down the unconditional transform for the interdeparture

time density as

D É �Ô � $ � 
h� ( �BD É �Ô ��þ node one empty
� ( D É �Ô ��þ node one nonempty (6.3)

Using our above calculations we have
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D É �Ô � $ � 
�� ( � u G � G�v u J � JÞv � ( u J � Jwv (6.4)

Little algebra gives

D É �Ô � $ G � G (6.5)

and so the interdeparture distribution is given by

D �Ë� � $ 
���Ü � > ` & �¸ÿ ��( (6.6)

Thus we find the remarkable conclusion that the interdeparture times are exponentially distributed with

the same parameter as the interarrival times! In other words (in the case of a stable stationary queueing

system), a Poisson process driving an exponential server generates a Poisson process for departures.

This startling result is usually referred to as Burke’s theorem [14]. In fact, Burke’s theorem says more,

namely that the steady-state output of a stable M/M/m queue with input parameter G and service-time

parameter J for each of the : channels is in fact a Poisson process at the same rate G . Burke also

established that the output process was independent of the other processes in the system,

6.2 Open queueing networks

Jackson considered an arbitrary network of FCFS queues [40]. The system he studied consists of
è

nodes where the Z th node consists of : Y exponential servers each with parameter J Y ; further the Z th
node receives arrivals from the outside system in the form of a Poisson process at rate GHM , Y . Thus, ifè $ 
 then we have an M/M/m system. Upon leaving the Z th node a customer then proceeds to the/ th node with probability M4Y}8 : this formulation permits the case where M'YlY�ÿ � . On the other hand, after

completing service in the Z th node the probability that the customer departs from the network (never

to return again) is given by 
h� Ð à8 g I M_Y}8 . The notation is described in Figure 6.2.

In each queue, the service time of the customer is drawn independent of the service times in other

queues. Note that in a packet network the sending time of a packet, in reality, is the same in all queues

(or differs by a constant factor, the inverse of the line speed). The dependence, however, does not

markedly affect the behavior of the system (so called Kleinrock’s independence assumption.)

We must calculate the total average rate of customers to a given node. To do so, we must sum

the (Poisson) arrivals from outside the system plus arrivals (not necessarily Poisson) from all internal
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Source
Destination  Z�ß , �

Z�ß , I Z n ß n �
Z � ß ���

ZZ � I

� �

� nZ � ß � n
Z n

Z �
Z I

Z � Z � ß � �� �
Z n ß n �Z I ß I n

Figure 6.2: Example of an open queueing network.

nodes; that is, denoting the total average arrival rate to node Z by G�Y we easily find that this set of

parameters must satisfy the following equations:

G9Y¿$¼GHM , Y � à~8Fg I G²8�MF8aY & ZW$ 
'&�(�(�()& è ( (6.7)

In order to for all nodes in the system to represent ergodic Markov chains we require that GêY°Ï : Y J�Y
for all Z . What is amazing is that Jackson was able to show that each node (say the Z th) in the network

behaves as if it were an independent M/M/m system with Poisson input rate GKY . In general, the total

input will not be a Poisson process. The state variable for this
è

-node system consists of the vector¦á$ �ÔÓ I & Ó � &�(�(�(_& Ó à � , where Ó Y is the number of customers in the Z node (including the customer(s) in

service). Let the equilibrium probability associated with this state be denoted by ¾ �ÔÓ I & Ó � &�(�(�(_& Ó à � .
Similarly we denote the marginal distribution of finding Ó�Y customers at the Z node by ¾ Y��ÔÓ¯Y � . Jackson

was able to show that the joint distribution for all nodes factored into the product of each of the

marginal distributions. The following is known as Jackson’s theorem:

¾ �·¦ � $ àfYcg I ¾ Y��ÔÓ¯Y � (6.8)

where ¾ Y��ÔÓ¯Y � is given as the solution to the classical
è Ø è Ø): Y system:

¾ �ÔÓ�Y � $ ãä å ¾ � ��� � �Q_ � � ¤u ¤ a Ó¯Y ·¹: Y &¾ � ��� � c _ � ¤� a Ó¯Y#� : Y ( (6.9)
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where (-$ >i ¤ @ is the utilization factor, and

¾ � ��� $Màá i ¤ ��I~
u ¤ g � � : YB( � u ¤Ó¯Y ü � � : Y·( � i ¤: Y ü � 
�� ( �qâã ��I (6.10)

Jackson’s result is obtained from the flow balance equations:

G ¾ �·¦ �¿� à~ Ycg I J Y 
 u ¤ØÑ � ¾ �·¦ � $¼G à~ Ywg I M , Y ¾ �·¦ ��ä Y �
� à~ Ycg I M Y � J�Y ¾ �·¦ �/ä Y �

� à~ Ycg I
à~8 g � MF8aY J�8 ¾ �·¦ �/ä 8 ��ä Y � (6.11)

where the left-hand side represents the probability flow out of state ¦ , and the right-hand side the

probability flow to state ¦ . The quantity 
 u ¤·Ñ � is one when the condition Ó²Y$� � is true and zero

otherwise.

Rewrite the factor G9M , Y in the first term on the right-hand side by means of the flow conservation

equation G9M , YK$¼G9Y � Ð à8Fg I G²8�MF8aY The equation becomes:

G ¾ �·¦ �¿� à~ Ywg I J�Y 
 u ¤·Ñ � ¾ �·¦ � $ à~ Ycg I G9Y ¾ �·¦ �Ûä Y ��� à~ Ycg I
à~8 g I G�8�MF8<Y ¾ �·¦ �+ä Y �

� à~ Ywg I M Y � J�Y ¾ �·¦ ��ä Y �
� à~ Ycg I

à~8Fg � MF8aYËJ�8 ¾ �·¦ �/ä 8 �+ä Y � (6.12)

We insert the product form solution of Jackson’s theorem as a trial and show how the equation indeed

is satisfied. The following relations hold for the product form trialã¥¥¥ä ¥¥¥å G9Y ¾ �·¦ �Ûä Y � $VJ�Y 
 k ¤ØÑ � ¾ �·¦ �G 8 ¾ �·¦ ��ä Y � $VJ 8 ¾ �·¦ ��ä Y �/ä 8 �G Y ¾ �·¦ � $¨J Y ¾ �·¦ ��ä Y � (6.13)

Substitute these relations, in this order, into the first three terms of the right-hand side. The equation

now takes the form:
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G ¾ �·¦ �K� à~ Ycg I J�Y 
 u ¤ØÑ � ¾ �·¦ � $ à~ Ycg I J�Y 
 u ¤·Ñ � ¾ �·¦ ��� à~ Ycg I
à~8 g I MF8aY J�8 ¾ �·¦ ��ä 8 ��ä Y �à~ Ycg I M Y � G9Y ¾ �·¦ �K�à~ Ycg I
à~8 g � MF8aY J�8 ¾ �·¦ ��ä 8 ��ä Y � (6.14)

The second term on the left-hand side and the first term on the right-hand side cancel; so do the second

and forth term on the right-hand side. What remains is

G ¾ �·¦ � $ à~ Ycg I M Y � G9Y ¾ �·¦ � $ ¾ �·¦ � à~ Ycg I M Y � G9Y (6.15)

which is satisfied, because the streams into and out from the network are equal, G	$ Ð àYcg I G Y M Y � . Thus

we have shown that the product form solution stated in Jackson’s theorem indeed satisfy the global

balance equations of the Markov process describing the network.

6.3 Closed queueing networks

A modification of Jackson’s network of queues was considered by Gordon and Newell [34]. The

modification they investigated was that of a closed Markovian network in the sense that a fixed and

finite number of customers, say . , are considered to be in in the system and are trapped in that

system in the sense that no other customers may enter and none of these may leave; this corresponds

to Jackson’s case in which M , YK$ � and M Y � $ � for all Z .
The customer streams through the different nodes satisfy the conservation law:

G Y $ à~8 g I G 8 M 8<Y & ZW$ 
'&�(�(�(q& è ( (6.16)

These constitutes a homogeneous linear set of equations. One equation is linearly dependent on the

others, and the solution is determined uniquely up to a constant factor. Let � îG I &�(�(�(_& îG à � be a solution.

The general solution is of the form � � îG I &�(�(�(q& îG à � , where � is a constant that can be determined from

mean value analysis.

The equilibrium probabilities of a closed queueing network are:
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¾ �·¦ � $ ãä å I� � 6 C à � t àYwg I î( u ¤Y when Ð Y Ó¯Y¿$¨.� when Ð Y Ó¯YÞå$¨.
where î( Y $ îG Y Ø J Y , and the the normalization constant 9-�>. & è � is given by9t�>. & è � $ ~ªÇæ ç ¤ u ¤ g 6 àfYcg I î( u ¤Y (6.18)

This is the solution to the closed finite queueing network problem, and we observe once again that it

has the product form. The proof of is similar to that in open networks. The details are omitted.

6.4 BCMP queueing networks

The theorems of Jacksson and Gordon/Newell have been extended by Baskett, Chandy, Muntz and

Palacios [7] to networks with several job classes and different service strategies and interarrival/service

time distributions, and also to mixed networks that contain open and closed classes. The networks

considered by BCMP must fulfill the following assumptions:

� Type of network: The network is either open, closed or mixed.� Number of nodes: The network consists of
è

nodes.� Number of service classes: An open network is offered traffic from
×

service classes.� Queueing discipline: The following disciplines are allowed: FCFS, PS (processor sharing), IS

(infinite server), LCFS-PR (Last come first served preemptive resume).� Description of the service times: The service times of an FCFS node must be exponentially dis-

trivuted and class-independent, while PS, LCFS-PR and IS nodes can have any kind of service

time distribution with rational Laplace transform. For the latter three queueing disciplines, the

mean service time for different job classes can be different.� Load-dependent service rate: The service rate of an FCFS node is only allowed to depend on

the number of jobs at this node, whereas in a PS, LCFS-PR amd IS node the service rate for a

particular job class can also depend on the number of jobs of that class but not on the number

of jobs in another class.
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� Arrval process: Arriving jobs to an open network are distributed over the nodes in the network

in accordance to the probability M , Y�� ¶_� where ¶ denotes the service class.

These assumptions lead to four product-form node types and the local balance conditions for

BCMP networks, that is:

� Type-1: -/M/m - FCFS� Type-2: -/G/1 - PS� Type-3: -/G/ P - IS� Type-4: -/G/1 - LCFS PR

Note that we use the -/M/m notation since we know that, in general, the arrival process to a node in a

BCMP network will not be Poisson.

The BCMP theorem says that networks with the characteristics just decribed have product form

solution:

¾ �·¦ I &�(�(�(q& ¦ à � $ àfYcg I ¾ Y��·¦�Y � (6.19)

where ¦�Y�$Î�ÔÓ¯Y I &�(�(�(_& Ó�Y ð � denotes the state of node Z .
6.4.1 Closed BCMP queueing networks

For a closed queueing network fulfilling the assumptions of the BCMP theorem, the equilibrium state

probabilities have the form:

¾ �·¦ I &�(�(�()& ¦ à � $ 
9-�·è � àfYcg I øêY��·¦�Y � (6.20)

where the normalization constant is defined as:9t�·è � $ ~ç<é¤ëê ­ ª4¤ g¼ì àfYcg I øêY��·¦�Y � (6.21)

where è $Á�>. I &�(�(�()& . ð � and . ? denotes the number of jobs in the network from class ¶ , and the

function øWY��·¦�Y � is given by
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ø Y �·¦ Y � $ ã¥¥¥¥ä ¥¥¥¥å Ó¯Y ü I� ¤ � u ¤ � x I@ ¤ y u ¤ t ð? g I Iu ¤ ° a Ü u ¤ °Y ? & Type-1Ó Y ü t ð? g I Iu ¤ ° a�x p ¤ °@ ¤ ° y u ¤ ° & Type-2,4t ð? g I Iu ¤ ° a x p ¤ °@ ¤ ° y u ¤ ° & Type 3 ( (6.22)

where Ó�Y¿$¼Ð ð? g I Ó�Y ? and !�Y<�ÔÓ¯Y � is given by

! Y �ÔÓ Y � $ ã¥¥¥ä ¥¥¥å Ó¯Y üw& Ó�Y ·Q: Y &: Y üæ: u ¤ � i ¤Y & Ó�YWÿ : Y &
'& : YK$ 
 (6.23)

The mean number of visits Ü Y ? of a job of the ¶ th class at the Z th node of a closed network are the

solution to
×

sets of linear equations:

Ü Y ? $ à~8 g I Ü 8 ? MF8aYB� ¶_�F& Zý$ 
'&�(�(�( è &<¶ $ 
'&�(�(�( × ( (6.24)

Each of the
×

sets contains
è

linear equations. These equations balance the flows into and flows out

of node by each of the
×

customer classes.

6.4.2 Open BCMP queueing networks

For an open queueing network fulfilling the assumptions of the BCMP theorem and load-independent

arrival and service rates, we have

¾ �ÔÓ I &�(�(�(q& Ó à�� $ àfYcg I ¾ Y��ÔÓ¯Y � (6.25)

where

¾ Y��ÔÓ¯Y � $ ãä å � 
�� (²Y � ( u ¤Y & Type-1,2,4 � : Y¿$ 
q�Ü'� _ ¤ _ � ¤¤u ¤ a & Type-3
(6.26)

and

Ó�Y¿$ Ð ð? g I Ó¯Y ?(²Y¿$ Ð ð? g I (�Y ? (6.27)

with
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(�Y ? $ ãäæå G ? p ¤ °@ ¤ & Type-1 � : YK$ 
q�G ? p ¤ °@ ¤ ° & Type-2,3,4
(6.28)

For Type-1 with more that one server ( : Y � 
 ) Equation (6.9) can be used to compute the probaba-

bilities ¾ Y��ÔÓ¯Y � .
The mean number of visits Ü Y ? of a job of the ¶ th class at the Z th node of a open network are the

solution to
×

sets of linear equations:

Ü Y ? $VM , Y � ¶��¿� à~8Fg I Ü 8 ? M 8aY � ¶_�F& Z�$ 
'&�(�(�( è &<¶ $ 
'&�(�(�( × ( (6.29)

6.5 Performance evaluation of queueing networks

6.5.1 Mean value analysis

Although product-form solutions can be expressed very easily as formulae, the computation of state

probabilities in a closed queueing network is very time consuming if a straightforward computation

of the normalization constant (6.18) is carried out. The Mean Value Analysis (MVA) is an iterative

technique, due to Reiser and Lavenberg [71], where the mean values of the performance measures are

computed directly without computing the normalization constant.

MVA for closed networks is described as follow. Our objective is to find the mean number of

customers [ Y ± . ³ and sojourn time C Y ± . ³ as well as the absolute values of customer streams G Y through

different queues. The MVA method is based on two simple laws:

1. Little’s theorem, which express the relation between the number of jobs, the thoughput, and the

mean response time of a node or the overall system: [ $¼GXC
2. Arrival theorem, proven by [71] for all networks that have a product form solution. The arrival

theorem says that in a closed network with . customers, the state probabilities seen by a cus-

tomer entering any node are the same as the equilibrium probabilities ¾ ± . ��
 ³ �·¦ � in a network

with . �Q
 customers.

The MVA calculation proceeds recursively, incrementing the customer population in the network

step by step. Therefore, the total customer population is explicitly indicated in the brackets. The MVA

results can be collected as the following recursive method. At the start of recursion, set [�Y<± �4³ $ � .
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The recursion step is: C Y ± . ³ $ � 
U� [ Y ± . �Q
 ³Ë� I@ ¤[OY�± . ³ $¨. í> ¤ Ú ¤ïî 6ñðç éò ê ­ í> ò Ú ò î 6ñðG Y $ e ¤Øî 6ñðÚ î 6ñð (6.30)

In the second equation, the îG Y ’s are any solution to the flow equations G Y $ Ð 8 G 8 M 8aY .
6.5.2 Performance measures

The performance of queueing networks can be evaluated from the equilibrium probabilities ¾ Y��ÔÓ � as

follows. The mean number of customers in node Z is:

["YK$ Ì~
u g I Ó ¾ Y<�ÔÓ � (6.31)

The mean sojourn time in node Z is obtained from Little’s law:C�Y�$ ["YG9Y (6.32)

The mean waiting time in node Z is:

L§Y¿$DC�Y � 
J�Y (6.33)

The mean time in the network of a customer entering node Z is:C Y � $DC�Y � à~8 g I M_Y}8ÁC 8 � & Z�$ 
'&�(�(�()& è ( (6.34)

From this set of equations, the C Y � can be solved. The mean time in the network of a customer is:C¨$ [ G $ Ð àYwg I [ YG (6.35)
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Chapter 7

Dynamic programming

7.1 Finite planning horizon

Dynamic programming (DP) over a finite control horizon was pioneered by Bellman in the 50’s. To-

day, DP is used in many applications to achieve optimal control of deterministic or stochastic systems

over a finite control horizon. Applications include inventory control, machine maintenance, game

problems, optimal stopping problems, consumption problems, investment problems, and more.

7.1.1 Notation

We consider a basic optimal control problem, which is amenable to a dynamic solution. Our basic

model has two principal features: (1) an underlying discrete-time dynamic system, and (2) a reward

function that is additive over time. The dynamic system takes the form

¦ u�È I $¼º u �Ë¦ u & » u & R u �F& ÓÖ$ ��&_
'&�(�(�( (7.1)

where

� Ó indexes discrete time� ¦ u is the state of the system and summarizes past information that is relevant for future opti-

mization� » u is the control or decision variable to be selected at time Ó� R u is a random parameter (also called disturbance or noise depending on the context)

111



112 CHAPTER 7. DYNAMIC PROGRAMMING

� [ is the horizon or number of times control is applied

In case the disturbance R u only can take on single value we have a deterministic system, otherwise we

have a stochastic system.

7.1.2 The basic problem

We are given a discrete-time dynamic system

¦ u�È I $¼º u �Ë¦ u & » u & R u �F& ÓÖ$ ��&_
'&�(�(�( (7.2)

where the state ¦ u is an element of a state space # u , the control » u is an element of a space + u ,
and the random “disturbance” R u is an element of space D u . The control » u is constrained to take

values in a given nonempty subset ; u �Ë¦ u �ôó + u , which depends on the current state ¦ u ; that is,» u !,; u �Ë¦ u � for all ¦ u !
# u and Ó . The random disturbance R u is characterized by a probability dis-

tribution = u � §w& ¦ u & » u � that may depend explicitly on ¦ u and » u but no on values of prior disturbancesR u ��I &�(�(�()& R � .
We consider the class of policies (also called control laws) that consist of a sequence of functions

¾ $3%_J � &�(�(�(_& J e ��I * (7.3)

where J u maps states ¦ u into controls » u $¨J u �Ë¦ u � and is such that J u �Ë¦ u � !,; u �Ë¦ u � for all ¦ u !§# u .
Such policies will be called admissible.

Given an initial state ¦ � and an admissible policy ¾ $ %_J � &�(�(�()& J e ��I * , the system equation

¦ u�È I $¼º u �Ë¦ u & » u & R u �F& ÓÖ$ ��&_
'&�(�(�( (7.4)

makes ¦ u and R u random variables with well-defined distributions. Thus for given functions M u & Ó $��&_
'&�(�(�()& [ , the expected reward

1Çk��Ë¦ � � $ Õ �� ê l«õ ­ õ ö ö ö õ ÷Óø ­ ¹ M e �Ë¦ e �K� e ��I~
u g � M u �Ë¦ u & » u �Ë¦ u �F& R u � º (7.5)

is a well-defined quantity. For a given initial state ¦ � , and optimal policy ¾ É is one that maximizes the

reward, that is,
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1Çk ¡ �Ë¦ � � $7�$ù4Àk²­4ú 1Çk��Ë¦ � � (7.6)

where
À

is the set of all admissible policies.

Note that the optimal policy ¾ É is associated we a fixed initial state ¦ � . However, an interesting

aspect of the basic problem and of dynamic programming is that it is typically possible to find a policy¾ É that is simultaneously optimal for all initial states.

The optimal reward depends on ¦ � and is denoted 1êÉ¯�Ë¦ � � ; that is,

1 É �Ë¦ � � $û�$ù4Àk�­�ú 1Çk��Ë¦ � � (7.7)

It is useful to view 1WÉ as a function that assigns to each initial state ¦ � the optimal reward 1WÉ'�Ë¦ � � and

call it the optimal reward function or optimal value function.

7.1.3 Principle of optimality

The DP technique rests on a very simple idea, the principle of optimality. The name is due to Bellman,

who contributed a great deal to the popularization of DP and to its transformation into a systematic

tool. Roughly, the principle of optimality states the following rather obvious fact:

Let ¾ É $ò%_J É� &�(�(�(_& J Ée ��I * be an optimal policy for the basic problem, and assume that

when using ¾ É , a given state ¦�Y occurs at time Z with positive probability. Consider the

subproblem whereby we are at ¦�Y at time Z and wish to maximize the “reward-to-go” from

time Z to time [
Õ�¹UM e �Ë¦ e �K� e ��I~

u g�Y M u �Ë¦ u & » u & R u � º (7.8)

Then the truncated policy %_J�ÉY & J¿ÉY È I &�(�(�(_& J¿Ée ��I * is optimal for this subproblem.

7.1.4 DP algorithm

We now state the DP algorithm for the basic problem:

For every initial state ¦ � , the optimal reward 1 É �Ë¦ � � of the basic problem is equal to1 � �Ë¦ � � , where the function 1 � is given by the last step of the following algorithm, which

proceeds backwards from period [ �Q
 to period 0:
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1 e �Ë¦ e � $VM e �Ë¦ e � (7.9)1 u �Ë¦ u � $ �Üù4Ào � ­�ü � � ú � � Õ� � %_M u �Ë¦ u & » u & R u �K� 1 u�È I �Ôº u �Ë¦ u & » u & R u ��� * &Ót$ ��&_
'&�(�(�()& [ �Q
'& (7.10)

where the expectation is taken with respect to the probability distribution of R u , which

depends on ¦ u and » u . Furthermore, if » Éu $VJ Éu �Ë¦ u � maximizes the right side of equation

(7.10) for each ¦ u and Ó , then policy ¾ É $3%_J É� &�(�(�()& J Ée ��I * is optimal.

7.2 Infinite planning horizon

Dynamic programming (DP) for stochastic control with an infinite planning horizon was pioneered by

Bellman, Howard and others in the 50’s and 60’s. Today, DP is used in many applications to achieve

optimal control of deterministic and stochastic systems over an infinite planning horizon. Applications

are found within machine maintenance, structural inspection, elevator control policies, autonomous

robots, behavioral ecology, medical diagnosis, and telecommunications, and more.

DP is used for stochastic control of a Markov decision process (MDP) or a semi-Markov decision

process (SMDP). A MDP (SMDP) is a discrete-time (continuous-time) Markov process where transi-

tions from the current Markov state to other Markov states are influenced by a decision or action taken

by the controller in the current state. At each state transition a reward is delivered to the controller.

The goal of the controller is to select actions that maximizes the accumulated reward.

7.2.1 Markov decision process

Let ¦ u and » u denote the state and action at discrete time Ó , respectively, where ¦ u is a member of the

state space # , and the set of feasible actions at state ¦ is denoted ;-�Ë¦ � . After selecting action » u at

state ¦ u , the controller receives an immediate reward M uNÈ I . The environment is specified by the state

transition probabilities,

6 ú | �B» � $¨=Ö± ¦ u�È I $"A þ ¦ u $¨¦ & » u $"» ³]& ¦ & A	!§# & »§!+;j�Ë¦ � (7.11)

and expected immediate rewards
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× �Ë¦ & » � $�ÕÖ± M u�È I þ ¦ u $V¦ & » u $"» ³]& ¦§!á# & »§!,;-�Ë¦ � (7.12)

For infinite horizon problems, two alternative formulations of the reward maximization objective

are common: average reward and discounted reward. Introducing the (stationary) policy function¾2Í #��ý; , the average reward
× � ¾¿� under policy ¾ is defined:

× � ¾¿� $ ��

�e â Ì Õ ¹ 
[
e ��I~
u g � M u�È I �Ë¦ u & » u � º (7.13)

where » u $¨J°�Ë¦ u � . The average reward does not depend on the initial state ¦ � provided (for example)

that at least one state is recurrent. An optimal policy ¾ É is one that maximizes the average reward, that

is,

× � ¾ É � $û�$ù4Àk�­�ú × � ¾¿� (7.14)

where
À

is the set of all feasible policies. The optimal average reward is denoted
× É .

An optimal policy for an MDP can be obtained, in principle, from Bellman’s optimality equation.

This is actually a system of nonlinear equations (using the average-reward formulation):

ãä å z É �Ë¦ � $û�Üù4À o ­Çü � ú ��þ × �Ë¦ & » ��� × É � Ð | ­ � 6 ú | �B» � z É �BA �hÿ"& ¦§!
#���%_¦ x *z�É'�Ë¦ x � $ � (7.15)

where ¦ x is an arbitrary chosen reference state, and z�É4�Ë¦ � are relative values (also referred to as

differential rewards) of state ¦
!
# under an optimal policy ¾ É . The relative values have the following

interpretation: The relative value z��Ë¦ &<¾¿� under a policy ¾ , is defined as the difference in future reward

earnings when starting in state ¦ , compared to starting in the reference state, ¦ x .
The discounted reward has the following definition:

E �Ë¦ &<¾¿� $ ��

�e â Ì Õ ¹ e ��I~
u g � U u M u�È I �Ë¦ u & » u ��þ ¦ � $¨¦ñº (7.16)

where E �Ë¦ &<¾¿� is the value of state ¦ under policy ¾ , » u $ J°�Ë¦ u � , and UÄ!m� ��&_
q� is a discount factor

that makes the sum bounded. An optimal policy ¾ É maximizes the value function for all states. By

selecting U sufficiently close to 1, a policy that is optimal with respect to average reward is also optimal

with respect to discounted reward (and is said to be Blackwell optimal).
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Bellman’s optimality equation for the discounted-reward formulation takes the following form:

E É �Ë¦ � $û�Üù4Ào ­Çü ãä å × �Ë¦ & » �K� U ~| ­ � 6 ú | �B» ��E É �BA � ëæìí & ¦§!
# (7.17)

where E É¯�Ë¦ � is the value of state ¦ under an optimal policy ¾ É .
7.2.2 Semi-Markov decision process

Recalling that an SMDP is a continuous-time version of the MDP, let the expectancy of the time

spent in a state ¦ after performing action » be denoted Ê �Ë¦ & » � . The average-reward formulation of

Bellman’s optimality equation takes the following form:

ãäæå z�É¯�Ë¦ � $û�$ù4À o ­�ü � ú � þ × �Ë¦ & » ��� × É Ê �Ë¦ & » �K� Ð | ­ � 6 ú | �B» � z�É��BA � ÿ & ¦§!§#���%_¦ x *z�É¯�Ë¦ x � $ � (7.18)

In case of discounted reward, the continuous-time discounting is effectuated by a negative-exponential

time window with parameter ! ( !D� � ). The expected, discounted, immediate reward obtained after

selecting action » at state ¦ is

× � �Ë¦ & » � $¨Õ � � `�� � `��� Ü � � ` ©H�Ë� � � ��� (7.19)

where ©H�Ë� � is the reward rate at time � , � ú and � | denote the time of entering state ¦ and the next stateA , respectively, and the expectations of �Ë� ú�� � | � and ©H�Ë� � depend on ¦ and » . In practice ©H�Ë� � is often

constant between state transitions. The Bellman optimality equation is

E É �Ë¦ � $û�$ù4Ào ­�ü ãä å × � �Ë¦ & » �K�QÜ � �	� � ú C o � ~| ­ � 6 ú | �B» ��E É �BA � ë ìí & ¦
!§# (7.20)

7.2.3 DP algorithms

In this section we outline three DP algorithms known as Policy iteration, Value iteration and Linear

Programming. These algorithms apply to both the average reward and discounted reward formulation.

However, we choose to describe them for the average reward formulation for SMDPs. In this case

the policy iteration algorithm finds the optimal policy along with the optimal relative values and the

optimal average reward. Similarly, the value iteration algorithm find the optimal policy along with the

optimal values. The linear programming algorithm finds just the optimal policy.
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Policy iteration

The policy iteration algorithm contains four steps:

1. Model identification

2. Policy evaluation

3. Policy improvement

4. Convergence test

Before the policy iteration can start, the policy iteration counter Ó is set to 0, and an initial policy ¾ � is

arbitrarily selected. Then the first step is to identify the SMDP; that is, the state transition probabilities

and the expected immediate rewards under the current policy.

The second step, the relative value function and the average reward are computed. An efficient

way of doing this is to solve a system of linear equations:

ãäæå z��Ë¦ &<¾ u � $ × �Ë¦ & » �ý� × � ¾ u � Ê �Ë¦ & » �ê� Ð | ­ � 6 ú | �B» � z��BA &<¾ u �F& ¦2!
#���%_¦ x *z��Ë¦ x &<¾ u � $ � (7.21)

where »Ä$ J°�Ë¦ � . Finally, the policy is improved by traversing the actions for each state, and setting

the policy to the actions that results in the highest relative values:

»�$ûù�

���$ù4À^ ­Çü � ú � ãä å × �Ë¦ &2*H��� × � ¾ u � Ê �Ë¦ &2*��¿� ~| ­ � 6 ú | � *�� z��BA &<¾ u � ë ìí & ¦§!
#���%_¦ x * (7.22)

The forth step is the convergence step: stop the iteration if ¾ u�È I $ ¾ u where ¾ u�È I is the new improved

policy, and ¾ u is the current policy. Otherwise, let Ó Í $�Ó ��
 and go to step 1.

An assumption for the policy iteration algorithm to work is that in each iteration the underlying

Markov chain is irreducible.

Value iteration

The value iteration algorithm contains three steps:

1. Model identification
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2. Recursion step

3. Convergence test

Before the value iteration can start, an initial policy ¾ � and initial values E � �Ë¦ &<¾ � �F& ¦2!
# are arbitrar-

ily selected. Then the first step is to identify the SMDP.

The second step is the recursion step:

E k��Ë¦ &<¾ u � $ ÷× �Ë¦ & » ��� × � ¾ u � Ê �Ë¦ & » �¿� ~| ­ � ÷6 ú | �B» ��E k ��I �BA &<¾ u �F& ¦2!
# (7.23)

where »2$�J°�Ë¦ � , E k��Ë¦ &<¾¿� denotes the � -step value function, and the immediate reward ÷× �Ë¦ & » � and

transition probabilities ÷6 ú | �B» � are computed by uniformization which transforms the continuous-time

SMDP to a discrete-time MDP:

÷× �Ë¦ & » � $ I� � ú C o � × �Ë¦ & » �F& ¦§!
# & »§!,;j�Ë¦ �
÷6 ú | �B» � $ ãä å �� � ú C o � 6 ú | �B» �F& A,å$V¦ & ¦§!
# & »
!,;-�Ë¦ ��� � ú C o � 6 ú | �B» �K� ± 
�� �� � ú C o � ³]& At$V¦ & ¦§!
# & »
!,;-�Ë¦ � (7.24)

where Ê is the size of the discrete time step, chosen such that � Ï Ê · �$
�� ú C o Ê �Ë¦ & » � .
The third step is the convergence test. The iteration is stopped if �	· è k ��: k · X : k , where X

is a predetermined error. Otherwise, let �QÍ $ ��� 
 and go to 1. The convergence test makes use of

the following variables: : k-$û�$
�� ú ­ � Y0E k��Ë¦ &<¾ u �è k-$"�Üù4À ú ­ � Y0E k��Ë¦ &<¾ u �Y0E k��Ë¦ &<¾ u � $ E k��Ë¦ &<¾ u �W�5E k ��I �Ë¦ &<¾ u �
(7.25)

An assumption for the value iteration algorithm to work is that in exach iteration the underlying

Markov chain is irreducible.

Linear programming

The linear programming algorithm is:
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�$ù4À Ð ú ­ � Ð o ­Çü � ú � × �Ë¦ & » �Bùqú�o
s.t. Ð ú ­ � Ð o ­Çü � ú � Ê �Ë¦ & » �Bùqú�o $ 
Ð o ­Çü � | � ù | o $ Ð ú ­ � Ð o ­Çü � ú � 6 ú | �B» �Bùqú�oH& A !
# &ùqú�o ÿ ��& ¦§!§# & »
!,;-�Ë¦ �F( (7.26)

Let ù É be an optimal extreme point for the above LP (obtained, for example, by the simplex method).

Then for each ¦ !ò# , there will be at most one » ! ;j�Ë¦ � such that ù Éú�o � � ; call this action±��Ë¦ � . If ù Éú�o $ � for all » ! ;j�Ë¦ � , then set ±��Ë¦ � to an arbitrary element of ;j�Ë¦ � . The policy± $´± ±��Ë¦ � Í ¦y!5# ³ , which chooses action ±��Ë¦ � when ever the state is ¦ , maximizes over all policies

the long-run average reward.

7.3 Applications

7.3.1 Call admission control

Call admission control (CAC) is an important function in multi-service communication networks. In

this section we describe the semi-Markov decision process (SMDP) model for CAC on a single link.

The single link CAC problem is part of the end-to-end CAC and routing problem. The objective for

end-to-end CAC and routing is to maintain the QoS and GoS for all existing calls and call classes, and

to maximize the revenue for the network operator. To obtain a manageable complexity, the network

Markov process is decomposed into a set of independent link Markov processes. The state on each

link is assumed to evolve independently of other links. However, in a real network, the presence of

multi-link calls introduces positive correlation between states on successive links.

We formulate the CAC task as a reward maximization problem as follows. The link is offered call

requests from . traffic classes. Class /0! 1á$�% 
'&�(�(�()& .5* is characterized by:

� bit rate requirement ? 8 [bandwidth units],� Poissonian call arrival process with rate G98 [s ��I ],� exponentially distributed call holding time with mean 1/ J 8 [s],� reward parameter MN8�!5� ��&FPQ� .
A SMDP can be described as a tuple ÏÅ# & ; & 6 & × & Ê � , where
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� # is a finite set of states,� ; is a finite set of actions,� 6 Í #"I�;Ý� À �]# � is the state-transition function, where a member of
À �]# � is a probability

distribution over the set # ,� × Í #DI�;Ý��� is the reward function, giving the expected immediate reward gained by the

agent,� Ê Í #]I,;���� is the mean state sojourn time function, giving the mean time duration in each

state until a state transition.

The state space # is given by:

#�$ ãäæå�� $ %_¦�8'* Í ~8_­¯® ? 8�¦�8 · + ëæìí & (7.27)

where + denotes the capacity of the link.

The Markov decision action » is represented by a vector �´$ %q» 8 * & / ! 1 , corresponding to

admission decisions for presumptive call requests. The action space is given by:;¼$�%��§$3%q»�8'* Í »�8�!2% ��&_
 * & / !21�* & (7.28)

where »�8�$ � denotes call rejection and »98Ã$ 
 denotes call acceptance. The permissible action space

is a state-dependent subset of ; :;j� � � $3%��Ä!,; Í » 8 $ � if
� � K 8 Ø!
# & /Ö!21�* (7.29)

where
K 8 denotes a vector of zeros except a one in position /0!21 .

The Markov chain is characterized by state transition probabilities 6��	����� � which express the prob-

ability that the next state is � , given that action � is taken in state
�

. In our case, the state transition

probabilities become:

6��	����� � $
ã¥¥¥ä ¥¥¥å G�8�»�8 Ê � � & � �F& � $ � � K 8�!§# & /0! 1¦�8NJ�8 Ê � � & � �F& � $ � � K 8�!§# & /0! 1��& otherwise & (7.30)
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where Ê � � & � � denotes the average sojourn time in state
�

.

The expected reward in state
�

is given by
× � � & � � $¨©H� � � Ê � � & � � , where ©�� � � is obtained from

©H� � � $ ~8_­¯® MF8�¦�8NJ�8 ( (7.31)

The average sojourn time in state
�

is given by

Ê � � & � � $ ãäæå ~8�­�® ¦ 8 J 8 � » 8 G 8 ë ìí ��I ( (7.32)

We have tested the above SMDP model on the following example. . $ ç & +Á$ ç s & � ? I &�? � � $� 
'&
���F& �ËJ I & J � � $ � 
'&_
q�F& �ËM I & M � � $Î� 
'&
��� ; G I and G � were varied so that(j$ ? I G I+�J I � ? � G �+ J � $ 
'(.-�( (7.33)

Figure 7.1 compares the average reward rate of the optimal policy to that of Complete Sharing (CS).

The CS policy always accepts a new call provided there is sufficient free capacity on the link. Figure

7.2 shows the per-class blocking probabilities. The following observation were made:
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Figure 7.1: Average reward versus traffic ratio
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versus traffic ratio

1. The optimal policy is not in general of the threshold type, where a narrow-band (class-1) call is

accepted if and only if the free capacity is below a fixed threshold. A specific counterexample
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is given by + $ ç s & � ? I &�? � � $ � 
'&
���F& �ËM I & M � � $ � 
'&
���F& G I $ G � $ s & J I $ J � $ 
 where,

under the optimal policy, a narrow-band call is accepted in state (18,0) and (13,1), but is blocked

in (6,2) and (0,3). Note that in all of these states the free capacity is 6 units. An explanation

of this is as follows. In states (19,0) and (13,1), the time until next departure (which would

give sufficient room for a wide-band (class-2) call) is exponentially distributed with rate 19 and

14, respectively. But in state (7,2) and (1,3) the rates are 9 and 4, respectively. Thus, the risk

of blocking a future wide-band call in state (7,2) and (1,3) is higher than in states (19,0) and

(13,1). Therefore, the optimal policy blocks a narrow-band call in states (6,2) and (0,3) thereby

preventing the system from moving into a high-risk state.

2. For small and large values of the arrival rate ratio, there is little difference in performance

between the optimal policy and CS; for moderate values of G I Ø G � , the improvement can be

close to 10 percent.

3. The MDP policy depends on the arrival rate ratio.

4. The CS policy has lower NB blocking probability than the MDP policy.

5. The MDP policy blocks NB calls in all link states when G I Ø G � Ï ��($# .

6. The CS policy has higher WB blocking probability than the MDP policy.



Chapter 8

Game theory

8.1 Introduction

8.1.1 What is game theory?

Game theory is the formal study of conflict and cooperation [60]. Game theoretic concepts apply

whenever the actions of several agents are interdependent. These agents may be individuals, groups,

firms, or any combinations of these. The concepts of game theory provide a language to formulate,

structure, analyze, and understand strategic scenarios.

8.1.2 History and impact of game theory

The mathematician Emile Borel suggested a formal theory of games in 1921, which was furthered by

the mathematician John von Neuman in 1928. Game theory was established as a field in its own right

after the 1944 publication of the monumental volume Theory of Games and Economic Behavior by

von Neuman and the economist Oskar Morgenstern. The book provided much of the basic terminology

and the problem setup that is still in use today.

In 1950, John Nash demonstrated that finite games always have an equilibrium point, at which all

players chose action which are best for them given their opponents’ choices. The central concept of

non-cooperative game theory has been the focal point of analysis since then. In the 1950s and 1960s,

game theory was broadened theoretically and applied to problems of war and politics. Since the 1970s,

it has driven a revolution in economic theory. Additionally, it has found applications in sociology and

psychology, and established links with evolution and biology. Game theory received special attention

123



124 CHAPTER 8. GAME THEORY

in 1994 with the awarding of the Nobel prize in economics to Nash, John Harsanyi, and Reinhard

Selten.

At the end of the 1990s, a high-profile application of game theory has been the design of auctions.

Prominent game theorists have been involved in the design of auctions for allocating rights to use

the bands of the electromagnetic spectrum to the mobile telecommunications industry. Most of these

auctions were designed with the goal of allocating these resources more efficiently than traditional

governmental practices.

8.1.3 Definition of games

The object of study in game theory is the game, which is a formal model of an interactive situation. It

typically involves several players; a game with only one player is usually called a decision problem.

The formal definition lays out the players, their preferences, their information, the strategic actions

available to them, and how these influence the outcome.

In game theory, we generally assume players to be rational and intelligent. A decision maker is

rational if he makes decisions consistently in pursuit of his own objectives. In game theory, building

on the fundamental results of decision theory, we assume that each player’s objective is to maximize

the expected value of his own payoff, which is measured some utility scale. A player is intelligent if

he knows every that we know about the game and that he can make any inferences about the situation

that we can make.

The goal of game-theoretic analysis is to predict how the game will be played, or, relatedly, to give

advise on how best to play the game against opponents who are rational and intelligent.

All games can be classified as complete information games or incomplete information games:

� Complete information game: the player whose turn it is to move knows at least as much as those

who moved before him/her.� Incomplete information game: at some node in the game the player whose turn it is to make a

choice knows less than a player who has already moved.

All games can be classified into perfect information games or imperfect information games:

� Perfect information game: players know the full history of the game, all moves made by all

players etc and all payoffs.
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� Imperfect information game: games involving simultaneous move where players know all the

possible outcomes/payoffs, but not the actions chosen by other players.

In other words in a game with imperfect information, players are simply unaware of the actions chosen

by other players. However, they know who the other players are, what their strategies/actions are, and

the preferences/payoffs of the other players. Hence, the information about these other players in

imperfect information is complete. On the other hand, in a game with incomplete information, players

may or may not know some information about other players, e.g. their ’type’, their strategies, payoffs

or preferences.

Games can be classified into simultaneous or sequential games:� simultaneous game: all the players move together/or play their strategy at the same time.� sequential game: all players move one after another; the order of movement is important.

Games can be classified into one-shot or repeated games:� one-shot game: the game is only played only one time,� repeated game: the game is repeated finitely or infinitely many times.

Finally, games can be classified into cooperative and non-cooperative games:� cooperative games: players enter coalitions who act selfishly in a rational and intelligent way.

The members of a coalition cooperate to increase the members’ payoffs.� non-cooperative games: players act selfishly in a rational and intelligent way.

8.1.4 Equilibrium concepts

Table 8.1 shows the various equilibrium notions that have been proposed to characterize different

kinds of games. Selten provided a strengthening of the Nash equilibrium concept that would rule

out equilibria sustained by incredible threats [73]. Games of incomplete information are also called

Bayesian Games since some of the nodes in these games are owned by Chance or Nature. The actions

made by chance are not directly observed by the players and hence the name. A mixed strategy Nash

equilibrium of such games is called Bayes-Nash equilibrium, and was introduced by Harsani [35].

A second, stronger refinement of the equilibrium was introduced by Keeps and Wilson based on the

concept of sequential rationality [51].
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Information Type

Game Type Complete Incomplete

Static Nash Equilibrium Bayes-Nash Equilibrium

(Nash, 1951) (Harsani, 1968)

Dynamic Subgame Perfect Perfect Bayesian Equilibrium

Equilibrium Sequential Equilibrium

(Selten, 1975) (Kreps and Wilson, 1982)

Table 8.1: Equilibrium concepts

8.2 Games in extensive form

The extensive form is a complete description of how the game is played over time. This includes the

order which the players take actions, the information that the players have at the time they must take

those actions, and the times at which any uncertainty in the situation is resolved. A game in extensive

form may be analyzed directly, or can be converted into an equivalent strategic form.

To introduce the extensive form, let us consider a simple card game that is played by two people,

whom we call “player 1” and “player 2”. At the beginning of this game, players 1 and 2 each put a

dollar in the pot. Next, player 1 draws a card from a shuffled deck in which half the cards are red

(diamonds and hearts) and half are black (clubs and spades). Player 1 looks at his card privately and

decides whether to raise or fold. If player 1 folds he shows his card to player 2 and game ends; in this

case player 1 takes the money from the pot if the card is red, but player 2 takes the money from the

pot if the card is black. If player 1 raises he adds another dollar to the pot and player 2 must decide

whether to meet or pass. If player 2 passes, then the game ends and player 1 takes the money in the

pot. If player 2 meets, then she must also put another dollar to the pot, and then player 1 shows the

card to player 2 and the game ends; in this case, again player 1 takes the money in the pot if the card

is red and player 2 takes the money in the pot if the card is black. Figure 8.1 shows a tree diagram

for this simple card game in extensive form. The meaning of the notation in the tree digram will be

explained by the following definition.

Formally, for any positive integer � , an � -person extensive-form game % p is a rooted tree together

with functions that assign labels to every node and branch satisfying the following properties:

1. Each nonterminal node has a player label that is in the set % ��&_
'& ç &�(�(�('&�� * . Nodes that are
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Figure 8.1: Simple card game in extensive form.

assigned a player label 0 are called chance nodes. The set % 
'& ç &�(�(�(4&�� * represents the set of

players in the game, and, for each Z in this set, the nodes with the player-label Z are decision

nodes that are controlled by player Z .
2. Every alternative at a chance node has a label that specifies its probability. At each chance node,

these chance probabilities of the alternatives are nonnegative numbers that sum to 1.

3. Every node that is controlled by a player has a second label that specifies the information state

that the player would have if the path of play reached this node. When the path of play reaches

a node controlled by a player, he knows only the information state of the current node. That is,

two nodes that belong to the same player should have the same information state if and only if

the player would be unable to distinguish between situations represented by these nodes when

either occurs in the play of the game. In our notation, the player label and the information label

at any node are separated by a decimal point, with the player label to the left and the information

label to the right, so “ Z ( Ó ” would indicate a node where player Z moves with information state Ó .

4. Each alternative at a node that is controlled by a player has a move label. Furthermore, for any

two nodes ¦ and A that have the same player label and the same information label, and for any

alternative at node ¦ , there must be exactly one alternative at node A that has the same move

label.
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5. Each terminal node has a label that specifies a vector of � numbers �B» I &�(�(�()& »�k � $ �B»�Y � YË­ Í I C¯®¯®¯® C k Ò .
For each player Z , the number »�Y is interpreted as the payoff to player Z , measured in some utility

scale, when this node is the outcome of the game.

6. Whenever a player moves, he remembers all the information that he knew earlier in the game,

including all of his own past moves (known as perfect recall).

A strategy for a player in an extensive-form game is any rule for determining a move at every

possible information state in the game. In our simple card game, player 1 has four possible

strategies. We denote the set of strategies for player 1 in this game as % Rr,Rf,Fr,Ff * , where we

write first in upper case the initial letter of the designated move at 1.a node (with a red card), and

the second in lower case the initial letter of the designated move at the 1.b node (with a black

card). For example, Rf denotes the strategy “Raise if the card is red, but fold if the card is black,”

and Rr the strategy “Raise no matter what the color of the card may be.” Notice that a strategy

for player 1 is a complete rule that specifies a move for player 1 in all possible contingencies,

even though only one contingency will actually arise. Player 2 has only two possible strategies

M and P because player 2 has only one possible information state. Here M denotes “Meet if

player 1 raises” and P denotes “Pass if player 1 raises”

8.3 Games in strategic form

The strategic form (also called normal form) is the basic type of game studied in non-cooperative game

theory. To define a game in strategic form, we need only to specify the set of players in the game,

the set of options available to each player, and the way the players payoff depend on the options they

choose. Formally, a strategic form game is any % of the form

%2$ �>[ & �]+ Y � YË­ e & �B» Y � YË­ e � (8.1)

where [ is a nonempty set, and, for each Z in [ , + Y is a nonempty set and » Y is a function fromI 8_­ e + 8 into the set of real numbers � . Here, [ is the set of players in the game % . For each player Z ,+UY is the set of strategies available to player Z . When the strategic-form game % is played, each playerZ must choose one of the strategies in the set +�Y . A strategy profile is a combination of strategies that

the players in [ might choose. We let + denote the set of all possible strategy profiles, so that
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+3$ I¿8�­ e +�8 (8.2)

For any strategy profile ¶ $ � ¶ 8 � 8�­ e in + , the number » Y � ¶_� represents the expected utility payoff that

player Z would get in this game if ¶ were the the combination of strategies implemented by the players.

When we study a strategic form game, we usually assume that the players all choose their strategies

simultaneously, so there is no element of time in the analysis of strategic-form games.

A strategic form game is finite if the set of players [ and all the strategy sets +ÃY are finite. In

developing the basic ideas of game theory, we generally assume finiteness.

Von Neuman and Morgenstern suggested a procedure for constructing a game in strategic form,

given any extensive-form game % p . To illustrate this procedure, consider again the simple card game,

shown in Figure 8.1. Now suppose the players 1 and 2 know that they are going to play this game

tomorrow, but today each player is planning his or her moves in advance. Player 1 does not know

today what color his card will be, but he can plan now what he would do with a red card, and what

he would do with a black card. That is, as we have seen, the set of possible strategies for player 1 in

this extensive-form game is + I = % Rr,Rf,Fr,Ff * , where the first letter designates his move if his card is

red (at the node labeled 1.a) and the second letter designates his move if the card is black (at the node

labeled 1.b). Player 2 does not know today whether player 1 will raise or fold, but she can plan today

whether to meet or pass if 1 raises. So the set of strategies player 2 can choose among is + � = % M,P* , where M denotes the strategy “meet if player 1 raises” and P denotes the strategy “pass is player 1

raises.”

Even if we knew the strategy that each player plans to use, we still could not predict the actual

outcome of the game, because we do not know whether the card will be red or black. However, we

can compute the expected payoff to each player when these strategies are used in the game, because

we know that the red and black cards each have probability 1/2. So when player 1 plans to use the

strategy Rf and player 2 plans to use the strategy M, the expected payoff to player 1 is

» I � Rf,M � $ ç I 
qØ ç � � �O
q� I 
qØ ç $ ��(.- (8.3)

Similarly, player 2’s expected payoff from the strategy profile (Rf,M) is

» � � Rf,M � $ � � ç � I 
qØ ç ��
 I 
qØ ç $ �h��(.- (8.4)
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+ �+ I M P

Rr 0,0 1,-1

Rf 0.5,-0.5 0,0

Fr -0.5, 0.5 1,-1

Ff 0,0 0,0

Table 8.2: The simple card game in strategic form, the normal representation

The strategy-form game shown in Table 8.2 is called the normal representation of our simple card

game. It describes how, at the beginning of the game, the expected utility payoff to each player would

depend on their strategic plans.

8.4 Static non-cooperative games

8.4.1 Elimination of dominated strategies

For any player Z , let + � Y denote the set of all possible combinations of strategies for the players other

than Z ; that is,

+ � YK$ÝI 8_­ eON Í Y Ò +�8
(Here, [P� %_Z�* denotes the set of all players other than Z .) Given any Ü � YU$ � Ü 8 � 8�­ eQN Í Y Ò in + � Y and

any
� Y in +UY , we let � Ü � Y & � Y � denote the strategy profile in + such that the Z -component is

� Y and all

other components are as in Ü � Y .
For any set 0 and any function º Í 0��R� , ù�
S�3�$ù4À | ­UTOºý�BA � denotes the set of points in 0 that

maximize the function º , so

ù�
S�3�$ù4À| ­UT ºý�BA � $�%qA	! 0 þ ºý�BA � $û�$ù4Àv�­�T ºý� ù²� *
If player Z believed that some distribution V in Y �]+ � Y � predicted the behavior of the other players in

the game, so each strategy combination Ü � Y in + � Y would have probability V�� Ü � Y � of being chosen
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by the other players, then player Z would want to choose his own strategy in +�Y to maximize his own

expected utility payoff. So in game % , player Z ’s set of best responses to V would be

ù�
S� �Üù4À� ¤ ­ � ¤ ~p ø ¤ ­ � ø ¤ V�� Ü � Y � »W� Ü � Y & � Y � (8.5)

We let Y �10 � denote, for any finite set 0 , the set of all probability distributions over the set 0 .

In general, given any strategic-form game %5$´�>[ & �]+�Y � YË­ e & �B»�Y � YË­ e � , a randomized strategy for

player Z is an probability distribution over the set of +hY . Thus Y �]+SY � denotes the set of randomized

strategies for player Z . To emphasize the distinction from these randomized strategies, the strategies

in the set +SY may also be called pure strategies. For any pure strategy ¶ Y in +UY and any randomized

strategy ñ�Y in Y �]+UY � , ñ9Y�� ¶ Y � denotes the randomized strategy ñ�Y in Y �]+SY � .
The highest expected utility that player Z can get against any combination of other players’ ran-

domized strategies does not depend on whether Z himself uses randomized strategies or only pure

strategies. Furthermore, the optimal randomized strategies for Z are just those that assign positive

probabilities to his optimal pure strategies.

Any strategy
� Y is strongly dominated for player Z if and only if there exists some randomized

strategy ñ�Y in Y �]+UY � such that

» Y � ¶ � Y & � Y � Ï ~p ¤ ­ � ¤ ñ Y � Ü Y � » Y � ¶ � Y &aÜ Y �F&XW�¶ � Y !
+ � Y
where + � YS$ I 8�­ eQN Í Y Ò +�8 and ¶ � YS$ � ¶ 8 � 8_­ eON Í Y Ò . For example, in the strategic form of our simple

card game (Table 8.2), the strategy Ff is strongly dominated for player 1 by the randomized strategy

0.5[Rr]+0.5[Rf].

Note that
� Y is strongly dominated for player Z if and only if

� Y can never be a best response for Z ,
no matter what he may believe about the other players’ strategies. This in fact suggest that eliminating

a strongly dominated strategy for any player Z should not affect the analysis of the game, because

player Z would never use this strategy, and this fact should be evident to all the players if they are

intelligent.

After one or more strongly dominated strategies have been eliminated from the game, other strate-

gies that were not strongly dominated in original game may become strongly dominated in the game

that remains. For example, consider the game in Table 8.3. In this game, ù � is strongly dominated for
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+ �+ I ¦ � A � ù �* I 2,3 3,0 0,1? I 0,0 1,6 4,2

Table 8.3: A game in strategic form

player 2 by ��(.- ± ¦ � ³��Q��(.- ± A � ³ (the randomized strategy that gives probabilities 0.5 to ¦ � and A � each).

None of the other strategies for either player are strongly dominated in this game, because each is a

best response to at least one conjecture about how the other player may behave. (Strategy * I is best

for 1 against ¦ � , ? I is best for 1 against ù � , ¦ � is best for 2 against * I , and A � is best for 2 against ? I .)
However, in the game that remains after eliminating ù � , ? I is strongly dominated by * I for player 1

(because � Ï ç and 
 Ï � ). Furthermore, when ù � and ? I both are eliminated, we are left with a game

in which A � is strongly dominated by ¦ � for player 2 (because 0 ¡ 3). Then eliminating A � leaves only

one strategy for each player in the game: * I for player 1 and ¦ � for player 2. Thus iterative elimination

of strongly dominated strategies leads to a unique prediction as to what players should do in this game.

Any strategy
� Y is weakly dominated for player Z if and only if there exists some randomized

strategy ñ�Y in Y �]+UY � such that

» Y � ¶ � Y & � Y �¸· ~p ¤ ­ � ¤ ñ Y � Ü Y � » Y � ¶ � Y &aÜ Y �F&XW�¶ � Y !
+ � Y
and for at least one strategy combination î¶ � Y in + � Y ,

» Y � î¶ � Y & � Y � Ï ~p ¤ ­ � ¤ ñ Y � Ü Y � » Y � î¶ � Y &aÜ Y �F( (8.6)

It is harder to argue that eliminating a weakly dominated strategy should not affect the analysis of the

game because weakly dominated strategies could be best responses for a player, if he feels confident

that some strategies of other players have probability 0. Nevertheless, weak domination and iterative

elimination if weakly dominated strategies are useful concepts for analysis of games. In our simple

card game, the fact that Fr and Ff are both weakly dominated for player 1 is a formal expression of

our natural intuition that player 1 should not fold when he has a winning card.
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8.4.2 Nash equilibrium

In the previous examples, consideration of dominating strategies alone yielded precise advice on how

to play the game. In many games, however, there are no dominated strategies, as so these consid-

erations are not enough to rule out any outcomes or to provide specific advise on how to play the

game.

The central concept of Nash equilibrium is much more general. A Nash equilibrium recommends

a strategy to each player that the player cannot improve upon unilaterally, that is, given that the other

players follow the recommendation. Since other players also are rational, it is reasonable for each

player to expect his opponents to follow the recommendation as well.

We say that a pure-strategy profile ¶ in + is a Nash equilibrium if and only iff

»�Y�� ¶_� ÿ�»�Y�� ¶ � Y & � Y �F&XW ZS! [ &XW � Y�!
+UY (
The following general equilibrium existence theorem is due to Nash (1951).

Theorem

Given any finite game % , there exists at least one equilibrium in IdYË­ e Y �]+UY � .
Consider our simple card game. It is straightforward to verify that there are no equilibrium in

pure strategies in this game (Just check all eight possibilities). Thus, there must be an equilibrium that

uses properly randomized strategies. To find these equilibrium, notice first that the pure strategy Ff is

strongly dominated and Fr is weakly dominated in this game. It can be shown that any equilibrium

of the residual game generated by iterative elimination of weakly and strongly dominated strategies

is also an equilibrium of the original game. Thus, we can expect to find an equilibrium that involves

randomization between Rr and Rf and between M and P.

So let © [Rr]+ � 
�� © � [Rf] and  [M]+ � 
Ã�  � [P] denote the equilibrium strategies for player 1 and

2, where © and  are some numbers between 0 and 1. That is, let © denote the probability that player 1

would raise even with a losing card, and let  denote the probability that player
ç

would meet if player

1 raised. Player 1 would be willing to randomize between Rr and Rf only if Rr and Rf give him the

same expected utility against  [M]+ � 
h�  � [P], so

�  �¨
 � 
��  � $ ��(.-  �m� � 
��  �
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which implies that  T$ ç Ø�� . Thus player 2’s strategy in the equilibrium must be 2/3[M]+1/3[P]

to make player 1 willing to randomize between [Rr] and [Rf]. Similarly, to make player 2 willing to

randomize between M and P, M and P must give he the same expected utility against © [Rr]+ � 
�� © � [Rf],

so

� © � � ����(.-�� � 
Ã� © � $ ��
 © �m� � 
�� © �
which implies that ©�$ 
qØ�� . Thus the equilibrium must be

� 
qØ�� ±Rr ³�� ç Ø�� ±Rf ³]& ç Ø�� ±M ³��¨
qØ�� ± P ³Ë�
That is, player 1 raises for sure when he has a winning (red) card, player 1 raises with probability 1/3

when he has a losing (black) card, and player 2 meets with probability 2/3 when she sees player 1 raise

in this equilibrium. In fact, this randomized-strategy profile is the unique equilibrium of the simple

card game.

Two general observations about Nash equilibria are now in order. A game may have equilibria that

are inefficient, and a game may have multiple equilibria.

An outcome of a game is (weakly) Pareto efficient if and only iff there is no other outcome that

would make all players better off. For an example of equilibria that are not efficient, consider the

game in Table 8.4 known as Prisoner’s Dilemma. The story behind this game (taken from Luce and

Raiffa, 1957) may be described as follows. The two players are accused of conspiring in two crimes,

one minor crime for which their guilt can be proved without any confession, and one major crime for

which they they can be convicted only if at least on confesses. The prosecutor promises that, if exactly

one confesses, the confessor will go free now but the other will go to jail for 6 years. If both confesses,

then they both go to jail for 5 years. If neither confesses they will both go to jail for only 1 year. So

each player Z has two possible strategies: to confess ( º²Y ) or not to confess ( ±¯Y ). The payoffs, measured

in the number of years of freedom that the player will enjoy over the next 6 years, are shown in Table

8.4.

In this game, ��±æº I ³]& ±æº � ³Ë� is the unique Nash equilibrium. (In fact, º I and º � are the only two

strategies that are not strongly dominated.) However, the outcome resulting from ( º I º � ) is the only

outcome of the game that is not Pareto efficient. If Nash equilibria can be interpreted as describing

how rational players should play a game, then rational individuals should expect to all do relatively
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+ �+ I ± � º �± I 5,5 0,6º I 6,0 1,1

Table 8.4: Prisoner’s Dilemma game in strategic form

badly in this game. This example has been very influential as a simple illustration of how people’s

rational pursuit of their individual best interests can lead to outcomes that are bad for all of them.

For an example of game with multiple equilibria, consider the game in Table 8.5, known as Battle

of the sexes. The story behind this game (again, taken from Luce and Raiffa, 1957) is that the players 1

and 2 are husband and wife, respectively, and that they are deciding where to go on Saturday afternoon.

Each º4Y strategy represents going to the football match, whereas  �Y represents going to the shopping

center. Neither spouse would derive any pleasure from being without the other, but the husband would

prefer meeting at the football match, whereas the wife would prefer meeting at the shopping center.

There are three equilibria of this game: ��±æº I ³]& ±æº � ³Ë� which gives payoffs allocation (3,1) to players

1 and respectively, ��±æ I ³]& ±æ � ³Ë� , which gives payoff allocation (1,3); and

� ��(ZY�- ±æº I ³��m��( ç - ±æ I ³]&<��( ç - ±æº � ³��m��(ZY�- ±æ � ³Ë�
which gives each player an expected payoff of 0.75. In the first equilibrium, the players go both to

the football match, which which is player 1’s favorite outcome. In the second equilibrium, the players

go both the shopping center, which is player 2’s favorite outcome. So each player prefers a different

equilibrium.

In the third equilibrium the players behave in a random and uncoordinated manner, which neither

player can unilaterally improve on. Each player is uncertain about where the other player will go, and

gets the same expected payoff ( ��(ZY�- I 
 $ ��( ç - I � ) from going either way. The third equilibrium is

worse for both players than either of the other two equilibria, so it is also an inefficient equilibrium.

In a Nash equilibrium, two different pure strategies of player Z both have positive probability, then

they most both give him the same expected payoff in the equilibrium, because otherwise he would

never use the strategy that gave him a lower expected payoff. That is, in equilibrium, a player must be

indifferent between any of his strategies that have positive probability in this randomized strategy.
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+ �+ I º �  �º I 3,1 0,0 I 0,0 1,3

Table 8.5: Battle of the sexes game in strategic form

Thus, the set of strategies that have positive probability is an important qualitative aspect of an

equilibrium. In general, the support of a randomized-strategy profile ñ in I YË­ e Y �]+ Y � is is the set of

all pure-strategy profiles in + that would have positive probability if the payers chose their strategies

according to ñ . That is, the support of ñ is the set

IýYË­ e % ¶ Yý!
+UY þ ñ9Y�� ¶ Y � � � *
For example, consider again the Battle of the sexes game. The support of the ([ º I ],[ º � ]) equilibrium

is obviously %)º I *=IÄ%)º � * . In this equilibrium each player strictly prefers using the º²Y strategy to the _Y strategy, given that the other player is expected to go to the football match. Similarly, the support

of the ([  I ],[  � ]) equilibrium is obviously %) I *<I�%) � * ; and in this equilibrium each player Z strictly

prefers  Y to º Y , given that the other player is expected to go shopping.

As we have seen, this game also has a third equilibrium with support %)º I &  I *$I5%)º � &  � * . In an

equilibrium with this support, each player Z must be indifferent between º�Y and  qY , given the anticipated

behavior of the other player. Notice that player 2’s anticipated payoff against player 1’s randomized

strategy ñ I depends on her pure strategy choice as follows:

» � �>ñ I & ±æº � ³Ë� $ 
 ñ I �Ôº I ���m� ñ I �Ô 
q� if 2 chooses º �» � �>ñ I & ±æ � ³Ë� $ 
 ñ I �Ôº I ����� ñ I �Ô 
q� if 2 chooses  �
So for player 2 to be willing to choose either º � or  � , each with positive probability, these two

expected payoffs must be equal. That is, we must have ñ I �Ôº I � $ � ñ I �Ô I � . This equation, together with

the probability equation ñ I �Ôº I �K� ñ I �Ô I � $ 
 implies that ñ I �Ôº I � $ ��(ZY�- and ñ I �Ô I � $ ��( ç - . Notice

that player 2 should be willing to randomize between her pure strategies in the support. Similarly, to

make player 1 willing to chose either º I or  I , each with positive probability, we must have
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� ñ � �Ôº � ���¹� ñ � �Ô � � $ � ñ � �Ôº � �K�¨
 ñ � �Ô � �
which implies that ñ � �Ôº � � $ ��( ç - and ñ � �Ô � � $ ��(ZY�- . Thus, the equilibrium with support %)º I &  I * I%)º � &  � * must be

�>ñ I & ñ � � $ � ��(ZY�- ±æº I ³��m��( ç - ±æ I ³]&<��( ç - ±æº � ³H�y��(ZY�- ±æ � ³Ë�
8.4.3 Significance of Nash equilibria

Nash’s (1951) concept of equilibrium is probably the most important solution concept in game theory.

The general argument for the importance of this concept may be summarized as follows. Suppose

that we are acting either as theorists, trying to predict the players’ behavior in a given game, or as

social planners, trying to prescribe the players’ behavior. If we specify which (possibly randomized)

strategies should be used by the players and if the players understand this specification also (recall

that they know everything that we know about the game), the we must either specify an equilibrium

or impute irrational behavior to some players. If we do not specify an equilibrium, then some player

could gain by changing his strategy to something other than we have specified for him. Thus non-

equilibrium specification would be a self-denying prophecy if all players believed it.

8.4.4 The focal-point effect

As the Battle of the sexes game in Table 8.5, shows, a game may have more than one equilibrium.

Indeed, it is easy to construct games in which the set of equilibria is quite large.

When a game has multiple equilibria, the constraint imposed by the concept of Nash equilibrium

on social planners and theorists becomes weaker. We know that any one of these equilibria, if it were

expected by all players, could become a self-fulfilling prophecy. For example, in the Battle of the

sexes, suppose that (for some reason) players 1 and 2 expected each other to implement the �Ôº I & º � �
equilibrium. Then each player would expect to maximize his own payoff by fulfilling this expectation.

Player 2 would prefer the �Ô I &  � � equilibrium, but choosing  � instead of º � would reduce her payoff

from 1 to 0, given that she expects player one to choose º I .
Thus, to understand games with multiple equilibria, we must ask what might cause the players

in a game to expect each other to implement some specific equilibrium. The phenomena that tend to
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focus the players’ attention on one equilibrium is called the focal-point effect. The focal equilibrium

is an equilibrium that has some property that conspicuously distinguishes it from other equilibria.

According to the focal-point effect, if there is one focal point equilibrium in a game, when we should

expect to observe that equilibrium.

8.4.5 Bayes-Nash equilibrium

In games with complete information, all of the players know other players’ preferences, whereas

they wholly or partially lack this knowledge in games with incomplete information. Since the Nash

equilibrium is based on the assumption that the players know each others’ preferences, no methods has

been available for analyzing games with incomplete information, despite the fact that such games best

reflect many strategic interactions in the real world. Analysis of games where players do not know

each others’ payoff or preferences was usually in the domain of decision theory and uncertainty, since

game-theoretic approaches were inadequate to handle such complexities.

Harsani’s work (1967-1968) [35] provided the tools required for analyzing such interesting games.

He postulated that every player is one of several different ’types’. Each player in a game with incom-

plete information chooses a strategy for each of his types. Under certain conditions, Harsani showed

that for every game with incomplete information, there is an equivalent game with complete infor-

mation. In other words, he showed that games with incomplete information can be transformed into

games with imperfect information; it is to these games that the machinery of game theory applies to.

A mixed strategy equilibrium in such static-Bayesian games is called Bayes-Nash equilibrium. That

is, a Bayes-Nash equilibrium specifies an action or randomized strategy for each type of each player,

such that each type of each player would be maximizing how own expected utility when he knows his

own given type but does not know the other players’ types. Notice that, in a Bayes-Nash equilibrium,

a player’s action can depend on his own type but not on the types of other players. We must specify

what every possible type of every player would do, not just the actual type, because otherwise we

could not define the expected utility payoff for a player who does not know the other players’ actual

types.

In a static Bayesian game, player 1’s strategy is a best response to player 2’s if, for each of player

1’s types, the action specified by 1’s action rule for that type maximizes 1’s expected payoff, given

player 1’s belief about player 2’s type and player 2’s strategy. It is important to note that the best

responses of the players are conditional on the beliefs held by them. Thus, the idea of beliefs is central
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to the analysis of incomplete information games. A classic example of static bayesian games is the

sealed-bid action, where each player knows only his private valuation. The players bid based on the

belief they hold about the probability distribution over all possible evaluations.

To formally state the definition of a Bayes-Nash equilibrium, let % { be a Bayesian game

% { $ �>[ & �]+UY � YË­ e & ��C�Y � YË­ e & �76�Y � YË­ e & �B»�Y � Y ­ e �
A randomized-strategy profile for the Bayesian game % { is any ñ in the set IóYË­ e I `
¤ ­ Ú ¤ Y �]+UY � , that

is, any ñ such that

ñá$ ���>ñ9Y<� ¶ Y þ �zY ��� ? ¤ ­ � ¤ � `
¤ ­ Ú ¤ C YË­ eñ�Y�� ¶ Y þ �BY �F&XW�¶ Yý!
+UY &XW �BYW!&C�Y &XW Z°! [ &~
? ¤ ­ � ¤ ñ9Y�� ¶ Y þ �BY � $ 
'&XW �BY�!�C�Y &XW Z°! [ (

In such a randomized-strategy profile ñ , the number ñ�Y<� ¶ Y þ �BY � represents the conditional probability

that player Z would use action ¶ Y if his type were ��Y . In the randomized-strategy profile ñ , the random-

ized strategy for type ��Y of player Z is

ñ9Y�� §w&)þ �zY � $Î�>ñ9Y�� ¶ Y þ �BY ��� ? ¤ ­ � ¤ (
A Bayes-Nash equilibrium of the game % { is any randomized-strategy profile ñ such that, for every

player Z in [ and every type ��Y in C�Y ,
ñ Y � § þ � Y � $7ù�
S� �$ù4À� ¤ ­ � � � ¤ � ~` ø ¤ ­ Ú ø ¤ 6 Y �Ë� � Y þ � Y � ~? ­ � �� f8�­ eQN Í Y Ò ñ 8 � ¶ 8 þ � 8 � �� Ê Y � ¶ Y � » Y � ¶ Y þ � �

where for any Ê Y-! Y �]+UY � , we let �>ñ � Y & Ê Y � denote the randomized-strategy profile in which the Z -
component is Ê Y and all other components are as in ñ .

For a simple, two-player example, suppose that + I $ %_¦ I & A I * , + � $´%_¦ � & A � * , C I $ % 
'(}� * (so

player 1 has only one possible type and no private information). C � $ % ç (c
'& ç ( ç * , 6 I � ç (c
�þÞ
'(}��� $ ��($� ,6 � � ç ( ç þÞ
'(}��� $ ��( s , and the utility payoffs �B» I & » � � depend on the actions and player 2’s type as in

Tables 8.6 and 8.7.
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In this game, A � is a strongly dominated action for type 2.1, and ¦ � is a strongly dominated action

for type 2.2, so 2.1 must choose ¦ � and 2.2 must choose A � in a Bayes-Nash equilibrium. Player 1

wants to get either �Ë¦ I & ¦ � � or �BA I & A � � to be the outcome of the game, and he thinks that 2.1 is more

likely than 2.2. Thus, the unique Bayes-Nash equilibrium of this game is

ñ I � § þÞ
'(}��� $ ± ¦ I ³]& ñ � � § þ ç (c
q� $ ± ¦ � ³]& ñ � � § þ ç ( ç � $ ± A � ³
This example illustrates the danger of analyzing each matrix separately, as if it were a game with

complete information. If it were common knowledge that player 2’s type was 2.1, the the players

would be in the matrix on the left in Table 8.6, in which the unique equilibrium is ¦ I & ¦ � � . If it were

common knowledge that player 2’s type was 2.2, then the players would be in matrix on the right in

Table 8.7, in which the unique equilibrium is A I & A � . Thus, if we only looked at the full-information

Nash equilibria of these two matrices, then we might make the prediction, “the outcome of the game

will be �Ë¦ I & ¦ � � if player 2’s type is 2.1 and it will be �BA I & A � � if player 2’s type is 2.2”.

This prediction would be absurd, however, for the actual Bayesian game in which player 1 does not

initially know player 2’s type. Notice first that this prediction ascribes two different actions to player

1, depending on player 2’s type ( ¦ I if 2.1, and A I if 2.2). So player 1 could not behave as predicted

unless he received some information from player 2. That is, the prediction would be impossible to

fulfill unless some kind of communication is added to the structure of the game. Now notice that

player 2 prefers �BA I & A � � over �Ë¦ I & ¦ � � if her type is 2.1, and she prefers �Ë¦ I & ¦ � � over �BA I & A � � if her

type is 2.2. Thus, even if communication between players were allowed, player 2 would not be willing

to communicate the information that is necessary to fulfill this prediction, because it would always

give her the outcome that she prefers less. She would prefer to manipulate her communication to get

the outcomes �BA I & A � � if 2.1 and �Ë¦ I & ¦ � � if 2.2.

+ �+ I ¦ � A �¦ I 1,2 0,1A I 0,4 1,3

Table 8.6: Type � � $ ç (c
 for player 2

+ �+ I ¦ � A �¦ I 1,3 0.4A I 0,1 1,2

Table 8.7: Type � � $ ç ( ç for player 2
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8.5 Dynamic non-cooperative games

8.5.1 Subgame perfect equilibrium

Subgame perfectness refines the Nash equilibrium in extensive form games and is based on subgames

of the original game. Essentially, a subgame of a game in extensive form is any game starting from

some node of the original game. An equilibrium is ’subgame perfect’ if for every subgame of the

original game, the equilibrium strategies restricted to the subgame continue to be an equilibrium. For

instance, consider the extensive form game in Table 8.8. The normal form reveals that the game has

two equilibria, namely �>� & � � � and � × & × � � . The second nash equilibrium exists because player 1’s

best response to � � by player 2 is to end the game by choosing � . But �>� & � � � relies on the incredible

threat by player 2 to play � � rather than
× � , if given the move. But for player 2 choosing � � when

given the move is not a best response. Hence �>� & � � � cannot be an equilibrium since it does not satisfy

the equilibrium conditions for the subgame starting at node 2 of the game. The game has only one

subgame perfect equilibrium, i.e. � × & × � � . Subgame Perfectness is a fundamental refinement of the

Nash equilibrium in dynamic games with complete information. It is often used to reduce the number

of possible equilibria and to eliminate equilibria sustained by incredible threats.

1

1
2

0

1
   2

L R

L’ R’

2

0

Figure 8.2: A game in extensive form

+ �+ I � � × �� 1,2 1,2×
0,0 2,1

Table 8.8: A game in strategic form
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8.5.2 Perfect Bayesian equilibrium

To analyze dynamic Bayesian games, we introduce the concept of perfect Bayesian equilibrium. A

related concept is sequential equilibrium which is equivalent to perfect Bayesian equilibrium in many

applications but in some cases is slightly stronger. Sequential equilibrium is more complicated to

define and to apply than perfect Bayesian equilibrium, so most authors use the latter. The crucial new

feature of perfect Bayesian equilibrium is due to Kreps and Wilsson [51]: beliefs are elevated to the

level of importance of strategies in the definition of equilibrium. That is, the definition of equilibrium

no longer consists of just a strategy for each player but now also includes a belief for each player

whenever the player has the move but is uncertain about the history of prior play. The advantage of

making the players’ beliefs an explicit part of the equilibrium is that, just as we previously insisted

that the players choose credible (that is, subgame-perfect) strategies, we can now also insist that they

hold reasonable beliefs.

1

1
3

R

ML

[p] 2 [1−p]

2
1

0
0

00
2 1

L’ R’ L’ R’

Figure 8.3: A game in extensive form

+ �+ I � � × �� 2,1 0,0è
0,2 0,1×
1,3 1,3

Table 8.9: A game in strategic form

To illustrate why the player’s beliefs are as important as their strategies, consider the example in

Table 8.9. First, player 1 chooses among three actions: � ,
è

and
×

. If player 1 chooses
×

the the

game ends without a move by player 2. If player 1 chooses either � or
è

the player 2 learns that
×

was not chosen (but not which of � or
è

was chosen) and the chooses between two actions, � � and× � , after which the game ends. (The dashed line connecting player 2’s two decision nodes in the game

three on the left of Figure 8.9 indicates that if player 2 gets the move, player 2 does not know which

node has been reached – that is, whether player 1 has chosen � or
è

. The probabilities 6 and 
�� 6
attached to player 2’s decision nodes will be explained below.) Payoffs are given in the game tree.
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The strategic-form representation of this game on the right-hand side of Figure 8.9 reveals that

there are two pure-strategy Nash equilibria: �>� & � � � and � × & × � � . We first ask whether these Nash

equilibria are subgame-perfect. Because a subgame is defined to begin when the history of prior play

is common knowledge, there are no subgames in the game tree above. (After player 1’s decision

node at the beginning of the game, there is no point at which the complete history of play is common

knowledge: the only other nodes are player 2’s, and if these nodes are reached, then player 2 does

not know whether the previous play was � or
è

.) If a game has no subgames, the the requirement

of subgame-perfection – namely, that the players’ strategies constitute a Nash equilibrium on every

subgame – is trivially satisfied. Thus, in any game that has no subgames the definition of subgame-

perfect Nash equilibrium is equivalent to the definition of Nash equilibrium, so in this example both�>� & � � � and � × & × � � are subgame-perfect Nash equilibria. Nontheless, � × & × � � clearly depends on a

non credible threat: if player 2 gets the move, the playing � � dominates player
× � , so player 1 should

not be induced to play
×

by 2’s threat to play
× � if given the move.

On way to strengthen the equilibrium concept so as to rule out the subgame-perfect Nash equilib-

rium � × & × � � is to impose two requirements

Requirement 1: Whenever a player has the move and is uncertain about the history of prior play,

the player must have a belief over the set of feasible histories of play.

Requirement 2: Given their beliefs, the players’ strategies must be sequentially rational. That is,

whenever a player has to move, the player’s action (and the player’s strategy from then on) must be

optimal given the player’s belief at that point (and the other player’s strategies from then on).

In the example above, Requirement 1 implies that if player 2 gets the move, then player 2 must

have a belief about whether player 1 has played � or
è

. This belief is represented by the probabilities6 and 
"� 6 attached to the relevant nodes in the game tree. Given player 2’s belief, the expected

payoff from playing
× � is 6 §¯��� � 
Ã� 6 �V§�
 $ 
Ã� 6 , while the expected payoff from playing � � is6 §�
¸� � 
Ã� 6 �#§ ç $ ç � 6 . Since

ç � 6'� 
�� 6 for any value of 6 , Requirement 2 prevents player

2 from choosing
× � . Thus simply requiring that each player have a belief and act optimally given this

belief suffices to eliminate the implausible equilibrium � × & × � � in this example.

What about the other subgame-perfect Nash equilibrium, �>� & � � � ? Requirement 1 dictates that

player 2 have a belief but does not specify what it should be. In the spirit of rational expectations,

however, player 2’s belief in this equilibrium should be 6á$ 
 . We state this idea a bit more formally

as
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Requirement 3: Where possible, beliefs should be determined from Bayes’ rule from the players

equilibrium strategies.

Requirements 1 through 3 constitute the definition of perfect Bayesian equilibrium.

8.6 Repeated games

People may behave quite differently toward those with whom they expect no future relationship than

toward those with whom they expect no future interaction. To understand how rational and intelligent

behavior may be affected by the structure of a long-term relationship, we study repeated games.

In a repeated game, there is an infinite sequence of rounds, or points in the game, at which players

may get information and choose moves. That is, a repeated game has an infinite time horizon unlike

the finite game trees. In a repeated game, because no move is necessarily the last, a player must always

consider the effect that this current move might have on the moves and information of other players

in the future. Such considerations may lead players to be more cooperative, or more belligerent, in a

repeated game than they would be in a finite game in which they would know when their relationship

will end.

To introduce the study of repeated games, let us begin with a well known example, the repeated

prisoner’s dilemma. Here ± Y is Z ’s generous move, and º Y is Z ’s selfish move. The only equilibrium in

this game is �Ôº I & º � � . Not let us consider what happens if player 1 and 2 expect to repeatedly play this

game with each other every day, for a long time.

For example, suppose that the number of times that the game will be played is a random variable,

unknown to the players until the game stops, and that this random stopping time has a geometric

distribution with expected value 100. That is, the probability of play continuing for exactly Ó rounds

is � ��($[U[�� u ��I I ��(}�H
 . Thus, after each round of play, the probability that players 1 and 2 will meet and

play again is ��($[U[ ; and at any time when they are still playing, the expected number of further rounds

of play is 100. In this repeated game, generous behavior can be supported in equilibrium. Consider,

for example, the strategy of playing ± Y every day until someone plays º I or º � and thereafter playing º Y .
If both players plan to use this strategy, then, at any time in the game each player will get an expected

total future payoff of

Ì~
u g I � ��($[U[�� u ��I � ��(}�H
q� � - Ó � $ -'�¯��&
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as long as no one has deviated and chosen º�Y . But if either player Z deviated from this strategy and

chose º'Y on some particular day, then his expected total future payoff from this day onward would be

�h� Ì~
u g � � ��($[U[�� u ��I � ��(}�H
q� � 
 Ó � $ 
��Ç-�&

On the other hand, if anyone has ever played º I or º � , then it is easy to see that neither player could

gain by choosing ±¯Y when the other player is expected to follow this strategy and so always choose the

selfish move hereafter. Thus, at any point in time, with any history of past moves, neither player can

expect to gain by any unilateral deviation from this strategy.

The key in this generous equilibrium is that, whenever the players meet, they believe that there

is a very high probability that they will play again; so the hope of inducing future generous behavior

by the other payer can give each player an incentive to be generous. We could not construct such an

equilibrium if the players knew in advance when the game would end. For example, if it were common

knowledge that the game would be played for exactly 100 rounds, then the resulting 100-round game

would have a unique sequential equilibrium, with both always playing �Ôº I & º � � at every round. At the

last (100th) round, a generous move cannot induce any further generosity by the other player (because

there is not future), so there is no reason for either player to be generous. So the players should choose�Ôº I & º � � at the 100th round, no matter what the prior history would be. Thus, at the 99th round, the

players must know that their moves will have no impact on the 100th-round moves, so they should

play �Ôº I & º � � on the 99th round as well. Working backward through the game, it is straightforward to

verify by induction that the unique sequential-equilibrium scenario is indeed to play º I and º � at every

round.

Thus, rational behavior in a repeated game with potentially infinite time horizon may be quite

different from rational behavior in the corresponding game in which the number of rounds is arbitrarily

large but finite.

The subgame perfect equilibrium is a natural and standard way to analyze repeated games.

8.7 Cooperative games

An outcome of a cooperative game is defined by the values of the players utilities, �2$ �B» I &�(�(�(_& » e � .
The set of all possible outcomes is called a bargaining domain, ; . Cooperative game theory assumes

that bargaining domains are convex, closed, and bounded sets of
× e Í × ÿ � where [ denotes the
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number of players. The outcome of the game also depends on the starting point \Ö$ �Ô I &�(�(�(_&  e �OÍ\0!�; . This point can be interpreted as a pre-game assumption that the solution point » É can not be

worse than the starting point �B» ÉY ÿò qY � . Let ; � $Ç%�� ! ; Í » ÉY ÿò qY denote the set of possible

outcomes when the bargaining process starts at \ .

The main objective of cooperative game theory is to define a fair solution to the game defined by�]\ & ; � . In general, two different approaches can be considered. The first one assumes that there is a

bargaining process. It means that the solution is achieved in several steps (in the limit, it might be a

continuous process). The bargaining process can begin at the starting point or from a pair of solutions

than can each be treated as an offer and a counter offer (both may be Pareto optimal). The second

approach ignores the bargaining process and concentrates on a solution point determined by a set of

axioms that should provide fairness features acceptable for all players. The situation is somewhat

analogous to a conflict resolved by an arbiter, hence, the choice of game “arbitration scheme”.

We study a class of arbitration schemes that is based on the following fairness axioms:

1. Symmetry: The solution does not depend on specific labels, i.e. users with the same minimum

performance measures and the same utilities will have the same performances.

2. Pareto optimality: The solution is on the Pareto boundary.

3. Invariance with respect to utility transformations: The solution for any positive affine trans-

formation of �]\ & ; � denoted by E � ; �F&FE �]\ � is E ���ýÉ � where �WÉ is the solution to the original

system.

4. Independence of irrelevant alternatives: If the solution for �]\ & ; I � is �WÉ , and ; � ó ; I & �êÉ !+; �
then �WÉ is also the solution for �]\ & ; � � . In other words, this axiom states that if ; I is reduced,

in such a way that the original solution and starting point are still included, the solution to the

new problem remains the same.

Note that based on the axiom 3, without losing any generality, we can linearly transform the pair�]\ & ; � in such a way that �Üù4À�%q» �Y Í � � !7; � * and  �Y $ � where the prime denotes the model after

transformation. We call this case normalized.

From the fairness axioms formulated by Nash it can be shown the operating point is obtained by

optimizing the product of normalized player utilities [15]:
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� É $ûù�

���$ù4À^ efYcg I »�Y (8.7)

8.8 Applications

8.8.1 Bandwidth sharing

In [77] the problem of bandwidth sharing between different users is considered. A general network

topology is studied, and the question is how much bandwidth, or extra capacity, should be allocated

by the network to each of the users at each link.

The solution framework is based on the idea of the Nash bargaining solution from cooperative

game theory, which not only provides the rate settings of users that are Pareto optimal from the point of

view of the whole system, but are also consistent with the fairness axioms of game theory. The utilities

represents the (normalized) traffic rates of the users and are given be the following optimization rule:

� É $ûù�

���$ù4À^ efYcg I »�Y (8.8)

It is shown in [77] that this sharing of the bandwidth has the proportional fairness property intro-

duced in [44].

8.8.2 Call admission control

In [25] the issue of call admission control (CAC) on a single link is studied. To design a CAC policy

on the call level one has must often make a trade off between fairness and efficiency. Grade of Service

(GoS) measures the performance of the network on the call level. Typical GoS measures include call

blocking probability and average call set-up delay. In the literature, the GoS issue for CAC can have

been solved in at least two ways. In the first, the GoS constraints are directly taken into account

during the optimization process. In the second, each call class is allocated a certain weight or a

reward parameter and the control objective is to minimize the network cost or to maximize the reward

from the network. Thus, by changing the values of the weights or reward parameters, different GoS

distributions among the call classes can be achieved.

Hence, one seeks a CAC policy that efficiently utilizes network resources while at the same time

being fair to the various classes being supported. The theory of cooperative games provides a natural

and precise framework for formulating such a multi criterion problem as well as solution concepts.
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From the fairness axioms formulated by Nash it can be shown the operating point is obtained by

optimizing the product of per-class normalized utilities.

� É $ûù�

���$ù4À^ efYcg I »�Y (8.9)

The utility for each class is measured in terms of carried traffic:* 8h$ G²8 ? 8NJ ��I8 (8.10)

where ? 8 denotes the bandwidth requirement of a class / call, G�8 denotes the acceptance rate of class/ calls, and J ��I8 denotes the average holding time of a class / call.

The optimization of the product of per-class carried traffics is done as follows.

1. An initial value of the reward parameter vector � $Î�ËM I &�(�(�()& M e � is chosen.

2. The carried traffic for each class is evaluated from the value determination algorithm from

Markov decision theory.

3. A new value of the reward parameter vector is chosen, e.g. using the concept of interval halving.

4. Repeat from 2 until the new CAC policy ¾ � is the same as the old policy ¾ .

A numerical comparison indicates that the trunk reservation and dynamic trunk reservation can

provide fair, efficient solutions, close to the optimal ones.

8.8.3 Routing

Single-shot game

In this sub section we describe a routing game that is played only once. We consider a set _Æ$% 
'&�(�(�()& ô9* of users, that share a set `¼$ % 
'&�(�(�(4& �d* of communication links interconnecting a com-

mon source to a common destination node. Let ¶ , be the capacity of link  , and +�$ Ð , ­	a ¶ , be the

total capacity of the system. Each user Z has a throughput demand that is some process with average

rate M Y � � . We assume that M I ÿ M � ÿ (�(�( ÿ MUb . Let
× $ÎÐ Y ­dc M Y denote the total demand of the

users. We only consider capacity configurations ej$ � ¶ I &�(�(�()&<¶ µ � that can accommodate the total user

demand, i.e. configurations with +�� × .
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User Z ships its flow by splitting its demand M Y over the set of parallel links, according to some

individual performance objective. Let º Y, denote the expected flow that user Z sends on link  . The user

flow configuration
© Y $ �Ôº YI &�(�(�(q& º Yµ � is called a routing strategy of user Z and the set ø Y $3% © Y !f� µ Í�t· º Y, ·Q¶ , &  "!�`hg Ð , ­�a º Y, $VM Y * of strategies that satisfies the user’s demand is called the strategy

space of user Z . The system flow configuration
© $´� © I_&�(�(�()& © b � is called routing strategy profile and

takes values in the product strategy space ø�$jiOYË­kc�ø Y .
The performance objective of user Z is quantified by means of a cost function 1 Y � © � . The user aims

to find a strategy
© Y !Äø Y that minimizes its cost. This optimization problem depends on the routing

decisions of the other users, described by the strategy profile
© � Y $ � © I &�(�(�()& © Y ��I & © Y È I &�(�(�(_& © b � , since1 Y is a function of the system flow configuration

©
. A Nash equilibrium of the routing game is a

strategy profile from which no user finds it beneficial to unilaterally deviate. Hence,
© !2ø is a Nash

equilibrium if © Y ! ù�

�,�Ü
��l ¤ ­ � ¤ 1 Y �]m Y & © � Y �F& ZU!n_ ( (8.11)

The problem of existence and uniqueness of equilibria has been investigated in [65] for certain

classes of cost functions. Here, we consider cost functions that are the sum of link cost functions:

1 Y � © � $ ~
, ­	a 1 Y, � © , �F& 1 Y, � © , � $¼º Y, C , �Ôº , �F&  "!�` & (8.12)

where
© , $Î�Ôº I, &�(�(�(_& º b, � , and C , �Ôº , � is the average delay per unit flow on link  that depends only on

the total flow º , $ Ð YË­kc º Y, on that link. The average should be interpreted as a general congestion

cost per unit flow, that encapsulates the dependence of the quality of a finite capacity resource on the

total load º , offered to it. In the present method, we concentrate on congestion costs of the form

C , �Ôº , � $ ãä å � ¶ , � º , �a��I_& º , Ï ¶ ,PV& º , ÿ ¶ , (8.13)

Given a strategy profile
© � Y of the other users, the cost of user Z , as defined by (8.12) and (8.13), is

a convex function of its strategy
© Y . Hence, the minimization problem in (8.11) has a unique solution.

How to obtain the optimal routing strategy profile
© $ � © I &�(�(�(q& © b � is described in [50].
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Repeated game

In this subsection we describe a routing game that is played repeatedly an infinite number of times.

The basic model of the game is the same as for the single-shot routing game. In a repeated game there

is possibility of strategies that results in Nash equilibrium points (NEPs) which are more efficient than

in a single shot game.

The existence of a subgame-perfect NEP that not only achieves the system-wide optimum cost

but also yields a cost for each user no greater than its single-shot game NEP cost is shown in [52]

for two-node multiple link networks. It is shown that more general networks where all users have

the same source-destination pair have a subgame-perfect NEP that achieves the minimum total system

cost, under a mild technical assumption. It is shown that general networks with users having multiple

source-destination pairs do not necessarily have such an NEP.

In order for every user to benefit from the cooperation in comparison to the single shot game NEP,

the total system cost should decrease from that of the single shot game. Obviously, the total system

cost, even if all users cooperate, can not be smaller than the system optimum. Therefore, if the users

can achieve the system optimum through cooperation in a dynamic setting, some users, if not all, can

reduce their costs while the other users still do not have an incentive to deviate due to the existence of

credible threats.

8.8.4 Virtual path bandwidth allocation

The issue of virtual path bandwidth allocation is studied in [53]. A set of [ users is considered,

denoted by _y$3% 
'&�(�(�(4& [�* , that share a resource of total capacity (bandwidth) of ; units. Each user

reserves some of the resource capacity in order to establish a virtual path for its incoming calls. Calls

that are blocked on the virtual path level leads to performance degradation.

Users are noncooperative, meaning that each seeks to optimize its own performance. To that end,

the users minimizes a cost function. This function should account for the following tradeoff. On the

one hand, each user should try to minimize the blocking probability of its incoming calls at the virtual

path level, which is a decreasing function of the reserved capacity of the user’s virtual paths. On the

other hand, reserving capacity becomes more difficult (and thus costlier) as the system’s resources

are less available. This tradeoff is formally quantified as follows. Denote by +ÃY the strategy of userZ , i.e. the amount of capacity that user Z reserves. We can assume, without loss of generality, that

a user always obtains the amount of capacity it requests. The strategy space of user Z is ± ��&<;"³ , i.e.
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+UYá!Á± ��&<;O³ . Hence, « $ �]+ I & + � &�(�(�(q& + e � is the game strategy vector, and the game strategy

space is oÅ$ %¯« þ W Z �Ä· +SY ·Ñ; * . We also denote by C the total amount of reserved capacity, i.e.+ $ Ð Y ­dc +UY . The cost function for user Z , denoted by 1�Y , is of the following form:

1�Y<�z« � $�1�Y��]+UY & + � $¨ø¿Y��]+UY & + ��� 9 Y��]+UY � (8.14)

where the function ø Y accounts for the availability of resources as perceived by the Z th user, whereas

the function 9 Y accounts for the effect that the amount of reserved capacity has on the performance of

that user. The functions ø�Y and 9ÃY have well defined properties and examples of these functions are

given in [53].

Since the cost function of each user depends on the strategies of all the other users, we are faced

with a noncooperative game. We are interested in the Nash equilibrium solution of the game, i.e. we

seek a game strategy vector such that no user finds it beneficial to change its strategy. Formally, a game

strategy vector «jÉ in the strategy space o is a Nash equilibrium point (NEP) if, for all ZW$ 
'& ç &�(�(�(4& [ ,

the following holds:

1 Y �z« É � $ 1 Y �]+ ÉI &�(�(�(q& + ÉY ��I & + ÉY & + ÉY È I &�(�(�( + Ée � $ (8.15)�Ü
���qp � ¤ p � 1�Y<�]+ ÉI &�(�(�()& + ÉY ��I & +UY & + ÉY È I &�(�(�( + Ée � (8.16)

The NEP can be found from an iterative scheme. At each iteration, each user recomputes its

reserved capacity so as to optimize its cost function with respect to the current state of the system.

Two different versions of the iterative scheme is proposed in [53]: Gauss-Seidel scheme and Jacobi

scheme.

The resources available to customers cannot always be modeled by a single link. For example,

capacity might be available in various links of different quality, thus a user would have preferences

among the links. Moreover, such links may not directly connect the source node and destination

node, meaning that resources may take the form of a graph of general topology. Such extensions are

investigated in [53].
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