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MDP-based CAC and Routing in Loss-Delay

Networks: Polynomial Cost Approximation
Ernst Nordström, Ming Fan

Abstract— In this paper we study the call admission control

and routing issue in multi-service networks. Two categories of

calls are considered: a narrow-band with blocked calls cleared

and a wide-band with blocked calls delayed. The optimization is

subject to several Quality of Service constraints, either on the

packet or call level. The objective function is formulated as cost

minimization with costs incurred by the rate of NB and WB

reward loss and delay of WB calls. A suboptimal solution is

achieved by applying Markov decision process (MDP) theory.

I. INTRODUCTON

We consider the problem of optimal Call Admission Control

(CAC) and routing in multi-service networks such as ATM

and STM networks, and IP networks, provided they are

extended with resource reservation capabilities. The objective

is to maximize the revenue from carried calls, while meeting

constraints on the Quality of Service (QoS) and Grade of

Service (GoS) on the packet and call level, respectively.

The network is offered traffic from
�

call classes. Each

call class is associated with one of � origin-destination (OD)

node pairs. Each OD pair is offered traffic from � call

categories, meaning that
��� ��� . For presentation simplicity,

we assume � ��� which is represented by one narrow-band

(NB) category requesting a bandwidth of �
	 Mbps, and one

wide-band (WB) category requesting �
� Mbps �
��	�������� .
The required bit is represented by the call’s peak bandwidth in
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case of deterministic multiplexing, and by the call’s equivalent

bandwidth in case of statistical multiplexing.

It is well known that when calls are set up on demand,

the WB calls can suffer significantly higher rejection rates,

compared to NB calls, if there is no additional mechanism to

provide access fairness under overload conditions [16]. There

exists two main approaches to cope with this fairness problem:

access control of NB calls or queuing of WB calls.

Trunk reservation is a form of access control which reserves

capacity to WB calls by rejecting NB calls when the link

occupancy is over a threshold. While access control can deliver

good fairness properties, this is usually achieved at the expense

of bandwidth utilization.

Queuing of a WB call request is done when there is not

sufficient free bandwidth to accept the call request. When

a sufficient amount of bandwidth becomes available in the

network, a waiting WB call is allowed to enter the network.

This approach, if applied correctly, can provide access fairness

and increased bandwidth utilization when compared with trunk

reservation.

Modern CAC and routing mechanisms are state-dependent

rather than static, which means that the decision to reject

the request for a new call, or to accept it on a particular

path depends on the current occupancy of the network. That

is, the state of the network is represented by the number

of calls from each class in service, or waiting for service,

at each network link. A state-dependent CAC and routing

policy is based on a mapping, for every call class, from a

network state space to a set of possible routing decisions. First,

CAC determines the set of feasible paths between the source

and destination which offers sufficient QoS to the new and
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existing calls in terms of delay, delay variation, and data loss.

Second, the network should select one path among the set of

feasible paths to convey the call or to reject the request if

call acceptance would diminish the expected revenue. While

contributing to the maximization of the average revenue for

the operator, this choice must comply with GoS constraints

in terms of call blocking probabilities and call set-up delays.

State-dependent mechanisms offer advantages both in terms

of achievable revenue and ability to control the QoS and GoS.

This paper deals with a particular form of state-dependent

CAC and routing, where the behavior of the network is

formulated as Markov Decision Process (MDP) [6], [17]. A

MDP is a controlled Markov process, where the set of state

transitions from the current Markov state to other Markov

states depends on the decision or action taken by the controller

in the current state. Reward delivery from the user to the

network can be modeled as occurring at call completion since

this provides a correct model of carried reward.

Nordström and Dziong proposed a CAC and routing frame-

work where blocked NB calls are cleared and blocked WB

calls are delayed [11]. They formulated the control objective as

maximization of a reward function being a linear combination

of the reward from accepted NB and WB calls and the average

WB call set-up delay treated as cost (penalty). A given OD

pair can be offered traffic from several NB and WB categories

which each can have an unique value of the reward parameter.

Since both NB and WB calls are accounted for in the control

objective it becomes possible to control the access fairness

(call blocking probability) among both the NB and WB classes

and not just among the NB classes as was suggested in [4].

The trade-off between NB and WB reward loss and average

WB call set-up delay is controlled by the weight of the average

delay term.

The computational burden of the exact MDP framework

for CAC and routing is prohibitive even for moderate-size

networks. Fortunately, it can be reduced to manageable levels

by a set of modeling simplifications. First, the network is

decomposed into a set of links assumed to have independent

traffic and reward processes, respectively. Second, the
�

dimensional link Markov process and link reward process are

aggregated into a � dimensional link Markov process and link

reward process, respectively. Third, as will be studied in this

paper, the exact � dimensional link MDP task is transformed

into an approximate link MDP task which has reduced state

space.

The computational burden of each link MDP task associ-

ated with the � dimensional link Markov process increases

exponentially with the number of categories � . In order to

cope with the problem imposed by large state spaces, several

link MDP frameworks with reduced computational cost have

been proposed, notably methods based on state aggregation

[8], decomposition of the link Markov process [4], [13] and

polynomial cost approximation [10], [15].

Krishnan and Hübner proposed a state aggregation link

MDP framework for loss networks based on a scalar link state

representing the link occupancy [8]. Transition probabilities

between link states were derived from link occupancy prob-

abilities obtained by a recursive procedure due to Kaufman

[7] and Roberts [14]. The MDP task was solved by one-step

policy iteration.

State aggregation can not be used between the NB loss

category and the WB delay category, since the state space is

not coordinate convex. The condition for coordinate convexity

is not fulfilled since NB transitions are allowed from a given

state (due to a NB call departure) but a transition in the other

direction (due to a NB call arrival) is not always allowed. In

order to maintain coordinate convexity the NB arrival should

sometimes be able to preempt a WB from the link to the queue,

which is not allowed.

The link Markov process decomposition method is due

to Liao and Mason [9] and Dziong, Liao and Mason [4].

They observed that when the holding times of WB calls are

significantly longer than for NB calls, the NB process changes

state much more often than the WB process. This justifies

that the NB and WB process can be analyzed separately. The

NB process is analyzed separately for each state of the WB

process, and the WB process is analyzed by taking the average

”disturbance” of the NB process into account. Nordström
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and Dziong proposed a link model based on Markov process

decomposition for the CAC and routing objective adopted in

this paper [13].

Marbach, Mihatch and Tsitsiklis applied reinforcement

learning to estimate the optimal second-degree polynomial

link-cost approximation [10]. Although the complexity of each

simulation step is fixed and low, the required number of

simulation steps is large (in the order of ����� ).
Rummukainen and Virtamo proposed an analytical loss link

model for computing the the cost relative values as a linear

combination of a modest number of basis vectors [15]. Single-

coordinate and double-coordinate monomial vectors up to

some degree, were considered as basis vectors. The MDP task

was solved by one-step policy iteration. The accuracy of the

proposed polynomial cost approximation was only evaluated

on the link level for a loss network.

The aim of this paper is twofold. First, we extend Rum-

mukainen’s and Virtamo’s MDP framework to mixed loss-

delay networks. In particular, we formulate a link model for

the polynomial cost approximation, and a numerical procedure

for setting up the equations in this link model. Second, we

present a numerical simulation-based performance evaluation

on the network level of polynomial cost approximation. We

compare the results with the exact link MDP model and the

link models based on state aggregation [8] and decomposition

of the link Markov process [13]. We also compare with

conventional routing represented by the Least Loaded Routing

(LLR) method.

The paper is organized as follows: Section II formulates the

CAC and routing problem in terms of offered traffic, network

model, and optimization objective. Section III describes the

network decomposition and the exact link MDP model. Sec-

tion IV outlines the CAC and routing framework. Section V

proposes a new loss-delay link MDP model for polynomial

cost approximation. Section VI presents the simulation results

for MDP routing based on exact and approximate link models,

and for LLR routing. Finally, Section VII concludes the paper.

II. CAC AND ROUTING PROBLEM FORMULATION

A. Traffic assumptions and optimization objective

The network is offered traffic from
�

classes which are,

for sake of simplicity, subject to deterministic multiplexing.

The � -th class, ����� � � �"!
#$#
#�! �&% , is characterized by the

following:' Origin-destination (OD) node pair,' bandwidth requirement �)( [Mbps],' Poisson arrival process with rate *+( [s ,.- ],' Exponentially distributed holding time with mean 1/ /0(
[s],' Set of alternative routes, 1 ( , and' Reward parameter 2 ( �3�
�+!546� .

The parameter 2 ( is a CAC and routing control parameter

that can be used to achieve several different objectives of the

network operator. In particular it can be used to maximize

the network revenue if the reward parameters are proportional

to the call charging. It can also be used to achieve fairness

in network access by increasing the reward parameters for

handicapped calls and vice versa.

On the network links, the classes are aggregated into � �7�
bandwidth categories. The 8 -th category, 89�;: �<� �=! �>%?��$@ !BA % , on link C , is characterized by:' bandwidth requirement ��DE� � � 	 !)� � % [Mbps],' Average mean call holding time 1/ /GFD [s],' Average reward parameter 2 FD �IHG� .
where H denotes the CAC and routing policy. See [11] on

details on how to compute / FD and 2 FD �JHG� .
The objective function is formulated as cost minimization

with costs incurred by the rate of reward loss due to blocking

of NB and WB calls and delay of WB calls:

1LK � 1NM6O F P F Q F * F�*R� (1)

where * F� , *R� denotes the arrival rate of WB calls offered

to the C -th link and totally, to all OD pairs of the network,

respectively, and Q F denotes the average WB call-set up delay

for link C , P F denotes the weight of the delay term for link C ,
and 1 denotes the rate of lost reward:
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1 � O ( 2 ( * ($ST( (2)

where ST( denotes the � -th class call blocking probability.

B. Network and queuing model

The network is assumed to consist of a set of switching

nodes. The switching nodes communicate in both traffic flow

directions using uni-directional links. Each uni-directional link

has one finite FIFO queue for WB call requests. The follow-

ing basic scheme of queuing system management, originally

proposed in [4], is assumed throughout the paper. When the

path chosen by the CAC and routing algorithm has sufficient

available capacity for the new WB call, the call is set up

between the considered origin-destination node. Otherwise, at

least one link along the path is not able to directly accept

the new WB call. At those links, the new WB call request

joins the queue at the tail. We assume that the path would

not be chosen when some of its links has insufficient capacity

on both the link and in the queue. At links with sufficient

capacity, bandwidth is reserved for the new WB call while

waiting for all links to be ready to accept the call. A link

queue is served when a sufficient number or bandwidth units

becomes available on the link. In this case, bandwidth for the

WB call at the head of the queue is reserved on the link. When

bandwidth has been reserved on every link along the path for

a given WB call, the call is set up between the considered

origin-destination node.

III. MDP MODELING

A. Network decomposition

The behavior of the network under consideration can be

described by a Markov Decision Process (MDP) with the

objective to minimize the cost function defined by (1). The

network action space is given by

U �L�$VW�L��X ( %�Y=X (Z� � � %\[ 1]("!^�_��� % ! (3)

where
X ( � � denotes call rejection and the set 1 ( contains

the indices of the alternative routes possible for an accepted

class � call.

The network cost rate, `a�
b"� , is given by:

`c�Ib�� � O(�d"e 2 ( * ( �f�hg�ij� X ( �f�GMkOF d"l m Fon Fp*R� ! (4)

where b denotes the network state and n (=! n Fp denote the num-

ber of the � -th type calls and the number of calls in the C -th
queue in state b , respectively, i denotes the indicator function

which is one for positive arguments and zero otherwise, andq
denotes the set of all link indices in the network.

The network state and action spaces can be very large,

even for moderate-size networks. We therefore decompose the

network into a set of links assumed to have independent traffic

and reward processes, respectively [5].

The network Markov process is decomposed into a set of

independent link Markov processes, driven by state-dependent

Poisson call arrival processes with rate * F( �Jrs!BHG� . In particular,

a call connected on a path consisting of t links is decomposed

into t independent link calls characterized by the same mean

call holding time as the original call.

The network reward process is decomposed into a set of

separable link reward processes. The link call reward param-

eters 2 F( �IHG� fulfill the obvious condition that

2�( � OF d"lvu 2 F( �JHG��! (5)

where
q.w

denotes the set of links constituting path x , specified

by the routing policy H . Different models for computing link

reward parameters are possible [5]. In this paper we use a

simple rule: the call reward is distributed uniformly among

the path’s links, resulting in the formula 2 F( �JHG� � 2 (zy t , wheret denotes the number links in the call’s path.

Even in the decomposed network model, the state space can

be quite large when many call classes share the links. One

way to reduce the state space is to construct a modified link

reward process in which the link call classes with the same

bandwidth requirement are aggregated into one category 8\�{:
with average reward parameter defined as [5]:
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2 FD �IHG� � O(�d"e
| 2 F( �JHG� * F( �JHG�O(�d"e
| * F( �JHG� ! (6)

where ��D denotes the set of classes that belongs to the 8 -th
category, and * F( �IHG� denotes the average rate of class-� calls

accepted on link C . In the following, this simplification is

adopted, which reduces the number of effective classes to the

number of classes with unique bandwidth requirement.

B. Exact link model

The semi-Markov decision process (SMDP) model for the

link C consists of:'�} F is a finite set of states,' U F is a finite set of actions,'k~ F Y }6��}6� U���� is the infinitesmal generator matrix

of transition rates between states,' ` F Y }�� UL��� is the immediate cost rate function for

taking different actions in each state.

The state in the exact link model is given by r � �I� 	 !B�R�� ��� ,
where �aD denotes the number of category 8 calls on the link,

and �a� D denotes the number of category 8 calls in the system

(on the link and, possibly, in the queue). The state space } F
for the exact link model is given by:

} F � � r � �J� 	 !f�a�� �f� Y ���k� 	 �6� F	 !B�����a�� ���� F� !� p �7� p �IrG��!B� 	 � 	 M��J�a�� g�� p �B� � ��� F % !
where � F	 ��� � F y ��	"� , �� F� ��� � F y ���.��M�� F , and � F , � F ,
denotes the capacity and maximal size of link and queue C ,
respectively. For convenience, we denote by } F �I�
� the subset

of states where exactly � trunks are occupied:

} F �I�$� ��� r � �I�R	0!B�R�� ����� } F�� r.�G� � �=�T! � � �h#$#
#�!s�� F #
(8)

where �� F � � F M{��� � F denotes the system capacity, and � ��
��	c!5�����f� denotes the vector with bandwidth requirements.

The cardinality of the state space is denoted by � . The number

of WB calls in the queue, � p , is obtained from state r as

follows:

� p ��� p �IrG� Y¡�7¢¤£>¥
� � p Y � p§¦ �+!)� F g�� 	 � 	 ¦ �J� � �jg�� p �f� � % #
(9)

The MDP action is represented by a vector
V��¨��X D % !B8©�: , corresponding to admission decisions for presumptive call

requests. The action space is given by:

U F �L��VW�;��X D %ªY=X D � � �+!$� % !B8s�«: % ! (10)

where
X D � � denotes call rejection and

X D � � denotes call

acceptance. The permissible action space is a state-dependent

subset of
U

:U F �IrG� �¬��V � U F Y=X D � � if rWM�­ D y� } F !B8\�{: % (11)

where ­ D denotes a vector of zeros except a one in position8E�]: .
The � by � infinitesmal generator matrix ® of the link-

state process under CAC and routing policy H is defined by

~ F¯z° � V �
�
±²²²²²²³ ²²²²²²´
* FD �Irs!fHG� X D µ � r¶M�­�DE� } F !�RD / D µ � r«g�­�DE� } F !gª�¸· D d=¹ � D / D M�* FD �Irs!fHG� X D �"µ � r�� } F !�+! otherwise !

(12)

where * FD �Jrs!BHG� denotes the 8 -th category arrival rate to the

link in state r , see [5] for details of computation.

The expected cost rate in state r is given by ` F �Jrs! V � :
` F �Jrs! V � � O D d=¹ �f�hg X D¸� 2 FD * FD �Jrs!BHG�GM P F � p*R� ! (13)

IV. CAC AND ROUTING FRAMEWORK

This section outlines the MDP computational procedure for

determining a near-optimal CAC and routing policy using the

exact link model. The central idea is to compute path net-gain

functions, º w( �JµE!BHG� , which estimate the increase in long-term

reward due to admission of a class � call on path x in network

state µ . The CAC and routing rule is simply to choose, given

the state of the network and the class of the call request, a path

which offers maximal positive path net-gain among the paths
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with sufficient QoS. The call is rejected if the path net-gain is

negative, or if no path would offer sufficient QoS.

A. Basic definitions

The state-dependent path net-gain is defined as:

º w( �IµE!fHG� � 2 ( g OF d"lvu�» FD �Jrs!BHG��! (14)

where µ �L� r % denotes the network state in the decomposed

network model. The link shadow price » FD �Jrs!fHG� can be inter-

preted as the expected cost for accepting an 8 -th category call

in state r . The link shadow price is defined as follows:

» FD �Irs!fHG� �7¼ F �JrWM&­ D !fHG�§g ¼ F �Jrs!fHG��# (15)

where
¼ F �Jrs!BHG� denotes the relative value for category 8 in stater . The relative value in state r is defined as the difference

in future cost incurments when starting in the given state,

compared to a reference state, rG½ . In practice, the relative value

function is obtained by solving a set of linear equations (see

Section IV-B).

B. Adaptation of the CAC and routing policy

The algorithm for determining the near-optimal CAC and

routing policy H can be summarized as follows:

1) Startup: Initialize the relative values
¼ F �Jrs!BHG� in a way

that make all link net-gains with permissible admission

positive.

2) On-line operation phase: measure per-path call accep-

tance rates * w( �JHG� and per-link blocking probabilitiesS F( �JHG� while employing the maximum path net-gain

routing rule. Perform the measurements for a sufficiently

long period for the system to attain statistical equilib-

rium.

3) Policy iteration cycle: At the end of the measurement

period, perform the following steps for all links C in the

network:

a) Identify the link MDP model: Determine per-

category reward parameters 2�FD �JHG� and link call

arrival rates * FD �Jrs!fHG� .

b) Value determination: Find the relative values¼ F �Irs!fHG� and average cost rate 1 F �IHG� for the

current routing policy H .
c) Policy improvement: Find the new link CAC

policies H.�F based on the new relative values and

the new average cost rate.

4) Convergence test: Repeat from 2 until average cost per

time unit converges.

According to MDP theory an optimal policy is found after

a finite number of policy iterations in case of a finite state and

policy space [17].

1) Value determination: The value determination step for

link C determines the relative values
¼ F �Irs!fHG� for all statesr�� } F and the average cost rate 1 F �IHG� by solving a sparse

system of linear Howard equations:

±²³ ²´ ¼ F �Jrs!BHG� � ` F �Jrs! V �sg 1 F �JHG��M�O° d=¾R¿ ~ F¯z° � V � ¼ F �IµE!fHG�¼ F �Jr ½ !fHG� � �+À r�� } FsÁ � r ½ % #
(16)

The computation (time) complexity of the value determina-

tion step of policy iteration is a function of the size, � , of

the state space. Traditional Gauss elimination has complexity

O �I�ÃÂ$� . This can be seen as an upper limit of the actual

complexity since the system is sparse and more efficient

iterative algorithms can be used.

2) Policy improvement: The policy improvement step for

link C consists of finding the action that maximizes the relative

value in each state r�� } F :
VW��ÄvÅÇÆ+È©Ä$ÉÊ d=Ë ¿5Ì ¯vÍ

±³ ´ ` F �Jrs!)Î��Eg 1 F �IHG� MÏOÐ d=¾ ¿ ~ F¯z° �IÎ§� ¼ F �JµE!BHG��Ñ ÒÓ !
(17)

where
U F �IrG� denotes the set of possible actions in state r .

The set of actions which yields the maximum improvement

of relative values constitute an improved policy H��F to be

used again in the first step. The policy improvement step has

complexity O � �=Ô �Ã� , where � denotes the number of unique

bandwidth categories.
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V. POLYNOMIAL COST APPOXIMATION

A. Normal equations

Let Õ F �IHG� denote the � -vector of relative values¼ F �Irs!fHG��!fr�� } F . In the polynomial cost approximation we

express Õ F �JHG� as a linear combination of a modest number of

basis vectors Î§Ö , × � �=!$#
#$#�!BØ . In matrix form, we have

Õ F �IHG� �ÚÙOÖ�Û - P ÖR�JHG�fÎ�Ö ��Ü P ! (18)

where P �JHG� � � P - �JHG��!
#$#
#
! P Ù �JHG�B��� are the free coefficients

of the basis vectors, and
Ü

is a � by Ø matrix with vectorsÎ�Ö , × � �=!$#
#
#$!BØ as columns. Chosing the empty state as

reference state r ½ means that we require

Ý Î ÖvÞÇß � � for all × � �=!
#$#
#�!)Ø]# (19)

Substituting the parametric relative value representation (18)

in the Howard equations (16) yields the overdetermined linear

system of � equations in Ø variables:

` F �JHG�Eg 1 F �IHG��àZM6® Ü P �JHG� � � (20)

where ` F �IHG� denotes the � -vector of immediate cost rates.

Hence, we have a linear least-square problem were the task

is to find the coefficient vector that minimizes the Euclidean

norm of the left-hand side of (20).

According to standard theory for least-square problems, the

coefficient vector P �JHG� minimizing the Euclidean norm of the

left-hand side of (20) can be determined as the solution of the

normal equations:Ü � ® � ® Ü P �JHG� ��Ü � ® � � 1 F �JHG��àág�` F �IHG�f� (21)

This is a symmetric linear system of Ø equations in Ø
variables.

The average cost rate 1 F �JHG� can be treated as an unknown

variable as follows. Let us rearrange the Howard equations

(20) in the form

â g��ã® Üåäkæç 1 F �IHG�P �JHG�
èé � gh`�ê��IHG� (22)

Considering this as an overdetermined linear system of �
equations in ØëML� variables, the parameters that mimimize

the Euclidean norm of the residual vector can be determined

from the extended set of normal equations

æç � g�à���® Üg Ü � ®��sà Ü � ®���® Ü
èé æç 1 F �JHG�P �IHG�

èé �
æç àì�g Ü ��®��

èé ` F �JHG� (23)

Polynomial cost approximation employs one-step policy

iteration. This means that the policy improvement step is

implicitly implemented by selecting the path with maximum

path net-gain (no explicit policy improvement step is necessary

for each link). Since the relative values for each link are less

prone to change at each adaptation epoch, convergence occurs

faster than for the exact link MDP model.

B. Basis vectors

The basis vectors were chosen as follows [15]. First, we

consider the family of monomial basis vector Îí�
îj��!)î���ï Ô ,

with vector elements defined by

Ý Îo�¸î+� Þ ¯ � ÔðD Û - � �Çñ |D ! for r�� } F ! (24)

where �=ò is taken 1 so that î D � � indicates the the8 th factor is always unity; this interpretation holds for all

potential ocurrences of �"ò in this paper. For simplicity, we

assume that the exponent vector î does not contain mote than

two nonzero elements, thus restricting the discussion to the

single-coordinate monomials � � ñ |D and the double-coordinate

monomials �a� ñ |D �a� ñ uw . Note that (19) makes it unnecessary to

consider the case î � � in which all elements of Îo�¸óR� are

equal to 1.

Second, we consider the piecewise monomial basis vectorsÎí�
î>!)ô���!)î �ëï Ô !)ô � �"!
#
#$#�!E�� F , with the vector elements

defined by

Ý Îo�¸î>!)ô Þ ¯ � � ¯ d=¾ ¿�Ì¤õ Í ÔðD Û - � �öñ |D !fr�� } F ! (25)
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Here, we require that î to have at most one nonzero element,

so that elements of these vectors are either single-coordinate

piecewise monomials � ¯ d=¾R¿ Ì¤õ Í �R� ñ |D or piecewise constants� ¯ d=¾ ¿ Ì¤õ Í .
We specify the complete basis in terms of the integer pa-

rameters Q - ! Q�÷ !)ø ÷ and � - , where ø ÷ ¦ Q�÷ , as comprising

the single-coordinate vectors up to degree Q - [15]:

Îo� P ­ìù���! for P � � - M7�=!$#
#
#
! Q - ÀBú��]:j!
the double-coordinate monomial vectors up to degree Q¶÷ Máø ÷ :
Îo� P ­ìùkM m ­ 	 ��! for P � �=!$#
#$#�! Q�÷ À m � �"!
#$#
#�!)ø ÷ Àú�! @ �«:R!fúåû�ü@ !

the piecewise constant vectors

Îí�
óG!Bôì��! for ô � �"!
#
#$#�! �� F !
the piecewise single-coordinate mononimal vectors up to de-

gree � -
Îí� P ­ ù !Bôì��! for P � �=!$#
#$#�!B� - Àfú��{:jÀô � �=!$#
#$#�!E�� F !

the piecewise double-coordinate monomial basis vectors up to

degree Q ÷ M6ø ÷
Îo� P ­ ù M m ­ì	c!Bôì��! for P � �=!$#
#$#�! Q ÷ À m � �"!
#$#
#�!)ø ÷ Àú�! @ �«:R!fúåû�ü@ !)ô � �"!
#
#$#�! �� F !

the linear combinations of piecewise single-coordinate basis

vectors

Îí� P ­ìùá!$�=!s�� F g�ý�� �Ïþÿ ¿ ,��Oõ Û ò Îí� P ­ìù !)ô���!
for P � �=!$#
#$#�!B���"Àfú �{:j# (26)

and the linear combinations of piecewise double-coordinate

basis vectors

Îo� P ­ìù�M m ­ 	 !$�=!s�� F g�ý�� � þÿ ¿ ,��Oõ Û ò Îí� P ­ìùkM m ­ 	 !Bôì��!
for P � �=!
#$#
#�!)���=À m � �=!$#
#
#
!Bø ÷ ÀfúÏ�«:R#

(27)

The linear combination (26) replaces, for effiency reasons,

the Îo� P ­ìù !Bôì��!)ô � �=!
#$#
#�!s�� F g;ý . The remaining vectorsÎí� P ­�ù !Bôì��!)ô � �� F g�ýaM?�=!$#
#$#�!E�� F are kept separate. Similary

for the piecewise double-coordinte basis vectors.

The total number of basis vectors is now

Ø � � Q - g�� - � M Q ÷ � � ø ÷ g Q ÷ � -÷ �_�
�;g6�z���IýhM � �BM� - �_�IýíM7��� M �� F #
(28)

C. Structure of the normal equations

The elements of the right-hand side vector of the normal

equations are given by

Ý Ü ��®��Eà Þ Ö � O¯ d=¾ ¿ Ý ®ªÎ�Ö Þ ¯
for × � �=!$#
#
#
!BØ]! (29)

and the elements of the matrix
Ü � ®���® Ü are

Ý Ü � ®ª� ® Ü Þ Ö�� � O¯ d=¾ ¿ Ý ®�Î§Ö Þ ¯ Ý ®�Î�� Þ ¯
for ×G!fA � �=!$#
#$#�!BØ]# (30)

In order to further deconstruct the matrix structures, let us

take advantage of the sparsity of ® defined by (12), so as to

express an element of ®�ÎsÖ as

Ý ®�Î ÖzÞ ¯ � ÔO D Û - X D
* FD �Jrs!BHG��� Ý Î Ö"Þ ¯���� | g Ý Î Ö�Þ ¯ �BMÔO D Û - � D / D � Ý Î§Ö Þ ¯ , � | g Ý Î§Ö Þ ¯ � (31)

Let us now derive explicit forms for the elements of the

vectors ®�Îo�¸î+� and ®�Îí�
î+!Bôì� where î is restricted to the

simple forms considered in Section V-B. To begin with, for

single-coordinate monomial basis vectors Îo� P ­ ù ��! P�� � , the

elements differences in (31) can be expanded as

Ý Îí� P ­ìù�� Þ ¯	�
� | g Ý Îo� P ­ìùZ� Þ ¯� �I�R�Çù��7�$D Û ùZ��
�g��R� 
ù� ��D Û ù 
+,0-O � Û ò � P i�� ��� ��� 
>, � � �
�ù ! (32)



9

We apply this expression to (31) for the various basis vectors.

For single-coordinate monomial basis vectors Îo� P ­+ù���! P�� � ,
we get

Ý ®�Îí� P ­ ù � Þ ¯� ÔO D Û - X D * FD �Jrs!fHG��� D Û ù 
>,.-O� Û ò � P i�� � �
�ù

M ÔO D Û - � D / D � D Û ù 
+,0-O� Û ò � P i�� ��g��z� 
+, � � �
�ù (33)

For double-coordinate monomial basis vectors Îí� P ­ ù M m ­�	+� ,
where ú�û��@ and P ! m � � , we get

Ý ®�Îí� P ­ ù M m ­ì	+� Þ ¯� ÔO D Û - X D^* FD �Jrs!BHG���$D Û ù 
>,.-O� Û ò � P i�� � �
�ù � ��� 	

M ÔO D Û - X D¸* FD �Irs!fHG����D ÛG	 � ,0-O� Û ò � m i � � � 
ù � �
�	

M ÔO D Û - �RD / D �$D Û ù 
+,0-O� Û ò � P i � ��g���� 
>, � � �
�ù � ��� 	

M ÔO D Û - � D / D � D Û.	 � ,0-O� Û ò � m i � �fg���� � , � � � 
ù � �
�	

(34)

For piecewise constant vectors Îo�¸ó.!)ô���!Bô � �"!
#
#$#�! �� F , we get

Ý ®�Îí�
óG!Bôì� Þ ¯

�
±²²²²²²²²²²²²²²³ ²²²²²²²²²²²²²²´

X D * FD �Jrs!BHG��! r.�.� � ôªg3� D
for some 8g ÔO D Û - Ý X D¸* FD �Irs!fHG��M3�aD / D Þ !Ïr.�.� � ô�RD / D ! r.�.� � ô�M6��D
for some 8�+! otherwise

(35)

For piecewise single monomial vectors Îo� P ­+ùá!)ô���! P�� � , ô ��=!
#$#
#�!\�� F , we get

Ý ®�Îí� P ­ ù !Bôì� Þ ¯

�

±²²²²²²²²²²²²²²²²²²²²²²²²³ ²²²²²²²²²²²²²²²²²²²²²²²²´

X D * FD �Jrs!BHG� �a� 
ù ! r.�G� � ô�g3� D
for 8Tû� ú
O� Û ò X ù * Fù �Irs!fHG� � P i � � �

�ù ! r.�G� � ô�g3� ù
g ÔO D Û - Ý X D * FD �Irs!fHG��M3� D / D Þ � � 
ù !§r.�G� � ô
O� Û ò � ù / ù � P i�� �fg���� 
>, � � � �ù !hr.�G� � ô©M6� ù�RD / D �a� 
ù ! r.�G� � ô©M6��D

for 8Tû� ú�+! otherwise.
(36)

For piecewise double monomial vectors Îí� P ­>ù Mm ­ì	c!Bôì��! P ! m � � , ô � �"!
#$#
#�!E�� F , we get

Ý ®ªÎo� P ­ ù M m ­ì	c!Bôì� Þ ¯

�

±²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²³ ²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²´

X D * FD �Jrs!fHG���R� 
ù �R��� 	 ! r.� � � ô�g�� D
for 8Tû� ú
O � Û ò X ùZ* Fù �Jrs!BHG� � P i�� � �

�ù � ��� 	
M �O � Û ò X 	 * F	 �Jrs!fHG� � m i�� � � 
ù � �

�	 ! r � � � ô�g���ù
g ÔO D Û - Ý X D
* FD �Jrs!BHG� M&�RD / D Þ � � 
ù � � � 	 !Wr � � � ô
O � Û ò � ù / ù � P i�� ��g��z� 
+, � � � �ù � ��� 	M �O � Û ò �R	 / 	 � m i�� �fg���� � , � � � 
ù � �

�	 !§r.� � � ô©M�� ù�aD / D �R� 
ù �R��� 	 ! r.� � � ô©M���D
for 8Tû� ú�j! otherwise.

(37)

We now describe an efficient way to determine the vector

elements (29) and matrix elements (30). Under the assumption

that the policy H F �JrG� of the policy being evaluated are iden-

tical for each r�� } F �
�
� , all coefficients of the polynomial

expressions for ®�ÎsÖ , where Î§Ö is a monomial or piecewise

monomial basis vector, stays unchanged over each state set} F �I�$� . Denoting H F �I�$� the common policy in states r�� } F �
�
� ,
we can express the elements of ®�Î Ö in generic polyonmial
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form

Ý ®ªÎ�Ö Þ ¯ � Oñ d	������� � Öj�¸î+�
ÔðD Û - � � ñ |D !

for r�� } F �I�$��!B� � �+!$#
#
#
!E�� F ! (38)

where ø � Ö"!�ï Ô !)� � �+!
#$#
#$!s�� F are finite sets of expo-

nent vectors, and � � Öj�¸î+� is the coefficient of the monomial# ÔD Û - �a�öñ |D within the set of states } F �
�
� .
By subsituting (38) we can rearrange (29) as [15]:

Ý Ü � ®��\à Þ Ö � O¯ d=¾ ¿ Ý ®�Î§Ö Þ ¯� þÿ ¿O � Û ò O¯ d=¾R¿ Oñ d	�����$� � Ö �
î+�
ÔðD Û ò � ñ |D� þÿ ¿O � Û ò Oñ d	���%� �&� ÖR�
î+� q �
� F !B��!5î+�

(39)

and (30) as

Ý Ü ��®�� ® Ü ÞÇ�.Ö � O¯ d=¾R¿ Ý ®�Î � Þ ¯ Ý ®�Î ÖvÞ ¯� þÿ ¿O � Û ò O¯ d=¾ ¿ Oñ d	� �(' � � �í�¸î+� ÔðD Û ò � ñ |D Oñ&) d	� ��� � � Öj�¸î � �
ÔðD Û ò � ñ )|D� þÿ ¿O � Û ò Oñ d	���%� Oñ ) d	� �(' � � Ö �¸î+� � � � �
î � � q �
� F !)��!)î�M6î � � (40)

where
q �
� F !B��!5î+� is defined as:

q �
� F !)��!)îj� �
±²²²²²²³ ²²²²²²´
O¯ d=¾ ¿)Ì � Í

ÔðD Û - � � ñ |D ! C1

O¯ d=¾ ¿ Ì � Í*,+�-�+/. ÿ ¿
ÔðD Û - � � ñ |D ! C2

(41)

where C1 refers the condition ��� �«�¨� F or î � �¸î - !)î ÷ �
with î ÷ û� � and C2 refers to the condition � F M¬�Ã�¨�]��� F and î � �¸î - !B�"� with î - û� � . A recursive procedure

for computing the sum of monomials is formulated in the

Appendix. With this procedure, the computational complexity

for setting up the extended set of normal equations for linkC becomes 0��
�21 �� F � . Once the normal equations have been

constructed, they can be solved by Cholesky factorization

in O( Ø?Â ) operations. From the defintion of Ø in (28) this

translates to O( �43íM&�21T�� F M&��Â$ý�Â ) operations.

VI. NUMERICAL RESULTS

A. Considered routing algorithms

The routing algorithms that are considered in the numerical

evaluation are:' MDP – MDP routing by reward maximization based on

exact link model [11],' MDP P – MDP routing by cost minimization based on

polynomial cost approximation described in Section V

for loss-delay networks.' MDP D – MDP routing by reward maximization based

on decomposition of the link Markov process proposed

in [13].' MDP A – MDP routing based on Krishnan’s and

Hübner’s state aggregation link model [8] with modified

link reward parameters [12].' LLR – Least Loaded Routing described in [3], [11].

The choice of basis vectors for the MDP P routing algorithm

correspond to method A in [15], see Table III. Method A

performs least-squares approximation with a few basis vectors

of all the considered types.

One simulation run with the MDP-based algorithms consists

of an initial “warm up” period, followed by a number of

adaptation periods, and finally a measurement period. Each

adaptation period consists of an measurement period followed

by a policy iteration step.

The performance of the Least Loaded Routing (LLR)

method is also evaluated. The reason for evaluating LLR is

that it is among the routing methods with best performance

[1], [3]. The LLR routing method is implemented in many

countries, including USA and Canada. We are not aware of

any implementation of MDP routing in real networks.

B. Examples and results

The performance analysis is performed for the network

example W6N described in Table I. The topology is fully

connected. The total offered traffic load is measured by` � · (�d"e � ( * ( / ,0-( [Mbps*Erlang]. The link capacities and

offered traffic volumes for network example W6N are based
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W6N

symmetrical no

#nodes 6

#uni-directional links 30

#OD pairs 5 30

#routes per OD pair 5

link capacity 687 [Mbps] 12-192

queue capacity 9 7 0-3

network capacity [Mbps] 2484

max #links in path 2

#traffic categories : 2

mean holding time ;=<?>A@ [s] 1, 10

bandwidth B(@ [Mbps] 1, 6

total offered load C [Mbps*Erlang] 1816.8DFE@HG D @&>,@,<FB(@ 1

TABLE I

DESCRIPTION OF NETWORK EXAMPLE W6N.

on the example in [2] and is shown in Table II. Network W6N

corresponds to a STM type network. The OD pairs in W6N

are offered different traffic volumes (asymmetric case). The

algorithm specific parameter settings, presented in Table III,

were determined heuristically based on simulation experience.

We choose to evaluate all the routing algorithms in reward

maximization framework, since this makes the comparison

with our previous work easier. The routing performance is

measured by the reward loss, average call set-up delay and

objective reward loss:

� � �hg I y I�! (42)

Q � O F Q F * F�*R� ! (43)

�\K � �hg I�K y I�# (44)

where IZK denotes the reward due to carried calls with penalty

for delay:

IZK � I�g3O F P F Q F * F�* � # (45)

and I denotes the reward due to carried calls:

Link Link capacity Offered traffic

[Mbps] [Mbps*Erlang]

1,2 36 32.96

1,3 24 8.36

1,4 162 154.68

1,5 48 24.56

1,6 48 34.93

2,3 96 30.13

2,4 96 121.93

2,5 108 92.14

2,6 96 99.07

3,4 12 14.30

3,5 48 8.23

3,6 24 15.90

4,5 192 95.30

4,6 84 99.60

5,6 168 76.27

TABLE II

LINK CAPACITY AND OFFERED TRAFFIC FOR W6N

MDP adaptation epochs 6

MDP P adaptation epochs 4

MDP D adaptation epochs 6

MDP A adaptation epochs 4

call events in warm up period 500 000

call events in adaptation period 1000 000

call events in measurement period 1000 000

delay penalty weight JK7 100

#simulation points per curve L 4, 16, 19

#simulation runs per point M 20

Method A paramter NPO Q
Method A parameter 5 O ;
Method A parameter NSR ;
Method A parameter TUR ;
Method A parameter V W�;�XY9 7FZ B\[
Trunk res. W^]&__a` ]b_[ Z , NB traffic

WB traffic c ; , 9 7 Ged (6,0)

Trunk res. W^] __ ` ] _[ Z , otherwise (0,0)

TABLE III

ALGORITHM SPECIFIC PARAMETERS
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I � O(�d"e 2 ( * ( ! (46)

where * ( denotes the average class-� call acceptance rate.

C. Results Analysis

Fig. 1. Reward loss of different routing methods versus traffic ratio.

Fig. 2. Average call set-up delay of different routing methods versus traffic

ratio.

Fig. 3. Objective reward loss of different routing methods versus traffic ratio.
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VII. CONCLUSION

In this paper we formulated the CAC and routing prob-

lem in the cost minimization MDP framework with costs

incurred by call blocking and call set up delay. We extended

Rummukainen’s and Virtamo’s polynomial cost approximation

framework to mixed loss-delay networks. The contribution in-

cludes a link model for loss-delay call set up, and a numerical

procedure for setting up the equations in this link model.

APPENDIX

COMPUTING SUMS OF MONOMIALS

In this Appendix we show that
q � X !B��!5î+� can be expressed

recursively as

q � X !B��!5î+�
�
±²²²²³ ²²²²´
ñ uO� Û ò � î wi � q � X !B�íg3� w !5îZM��Ji�g3î w �f­ w � C1ñFfO� Û ò � î -ig� �q � X g3� 	 !B� g3� 	 !fi=­ - � C2

(47)

where �q � X !B��!5î+� � ñFfO� Û ò � î -ig� �q � X g3� 	 !)� g�� 	 !Bi=­ - � (48)

Let ú be an index such that î ù � � ; there is clearly one sinceî�û� ó . By reducing the value of �c�¤ù we can write
q � X !B��!5î+�

when condition C1 is fulfilled as

q � X !B��!5î+� � O¯	hji Û �
ÔðD Û - � � ñ |D� O¯	hki Û � , -�l �J� � ù M7��� ñ |

ÔðD Û -D\mÛ ù � � ñ |D� O¯ h i Û � , - lon ñ lO � Û ò � îvùip� � � �ùrq ÔðD Û -D\mÛ ù � �öñ |D� ñ lO� Û ò � î�ùis� q � X !)�og3��ù !)î�M��Ji�g3î�ù��f­ìù��
(49)

Similarly, we write for condition C2

q � X !B��!5î+� � O¯ h i Û �* + - + .�t � � ñ f	 � O¯ h i Û � , - +*u+v-%+j.�t , -%+ �I� � - M7��� ñ?f� ñFfO� Û ò � î -ig� �q � X g�� 	 !)� g�� 	 !Bi=­ - � (50)

The ground cases for the recursions areq � X !)��!)î+� � �+! ���6�j!q � X !)��!)óa� � C��I�v!fA©��! �����©� �� F !�q � X !B�v!)î+� � �+! ����wYx�y0�
�+! X ��!�q � X !B�v!)óa� � �C�� X !)��!fA©��! ��� X ���©� �� F !
(51)

where C��I��!BA©� is defined by the recursion

C��I��!BA©� � O¯ h i Û � � � O¯ h i Û �* ' Û ò �oM O¯ h i Û �* '�z ò �� O* + - + Û � �\M O° h i Û � , - ' �� C��
��! @ �.M6C��I� g3���\!BA©�
(52)

and �C"� X !B��!BA©� is defined by the recursion

�C"� X !B��!BA©� � O* + - + Û �* + - + .�t �oM O° h i Û � , - 'Ð?+�-�+/.�t �� �C�� X !B�v! @ �.M �C"� X !B�íg�� � !BA©��# (53)

The ground cases for C��
��!f8�� are:

C��I�j!f8�� � � for 8\�{:R!C��I��!B8�� � � for ���k�j!f8E�{:R!C��I��!$��� � � - +j{ � for � � �j# (54)

The ground cases for �C�� X !)��!f8�� are:�C�� X !B�j!f8�� � � for 8\�{:R!�C�� X !B��!B8�� � � for ���k�j!f8E�{:R!�C�� X !B��!$��� � � -�+ { � for �����©� X # (55)
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