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1 Introduction

The original fluid flow model for the FIFO queue with constaetwce rate was proposed by Kosten [2] and
further developed by Anick, Mitra and Sondhi [1]. The trathibassumption in fluid flow models is exponen-
tially distributed acivity periods. Kosten and AMS presahformulas for the fluid overflow probability of the
infinite FIFO queue. Tucker [4] and Jacobsen and Dittman gjved a formula for the fluid loss probability
of the finite homegeneous and heterogeneous FIFO queuectiegly. Tucker also presents a formula for the
delay distribution for a homogeneous FIFO queue. This net&vels the mean delay in a heterogeneous finite
FIFO queue. Tne fluid flow literature does not seem to contagnresult.

2 Traffic assumption

We consider a FIFO system that is offered traffic frétclasses. The capacity of the system is dendated
[Mbps]. The buffer capacity is denotdgl [Mbit]. The j-th class; € J = {1,..., K}, is characterized by the
following:

o Number of calls:N;;,
o Peak bit rate requirement; [Mbps],
e OFF to ON state transition rate; [s™!],

e ON to OFF state transition ratg; [s~'],

3 Model

The buffer is modeled as a fluid reservoir with a hole in théditand arriving information is modeled as a fluid
running into the reservoir. Let € J denote the index of an arbitrary class. Let the stochastiabies>: and

@ denote the stationary state of the system fluid process hengueue length, respectively. Uet= (k;);cs
denote the fluid state vector, wheke = k;(t) denotes the number of sources in their ON state at time
Vectors and matrices will appear in bold letter such thay tte be distinguished from numbers, functions etc.
Letp = (p1, ..., px ) denotes the peak rate vector for the sources and by the gecatarct ofk andp we mean:
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which is the total input rate in stale
The fluid state space is defined by the set:

The average load on the system is
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We assume the average input rate to be smaller than the @atpactity, i.ep < 1.
The sample path description of the buffer dynamics is:
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where generallyz)™ = max(z,0) and(z)~ = min(z, 0) denotes the positive and negative partpfespec-
tively, anda(t) is the total arrival rate at time

LetF(z) = {Fk(z)}kes denote the stationary buffer distribution column vectdngve Fi () = Pr(X =
k,Q <z),k€8S,0 <z < B. The system can be described by the following Kolmogordedtial equation

(1]:
d
Dd—XF(q) =MF(z),0 <z < B, (5)
whereD is a diagonal matrix with entrgk, k) equal to
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and where entryk, n) in M looks as follows:

K
Mk k) = — Z(Nz - ki)ai + k;B;, forke S
i=1
Mk e, ki1, ki) = (Ni — Bi + 1)y, forke S (7)
MK k1, kit 1, k) = (kl + 1)ﬁl, fork e S

4 Solution

The solutionF(z) = (Fx(x))kes is obtained from a spectral expansion:
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where{z(n)} are the solution to the generalized eigenvalue probi®yp = M. In practice, the eigen-
value for staték is found by solving a non-linear algebraic equation. Therigctory,, corresponding to the
eigenvaluez(n) is given by the coefficients of certain polynomialinvariables.

The coefficientsi, are found by means of the initial condition [5]:

F(0) =0, a(k)>C
0=ux =m(k)—limy_pFk(z), ak)<C
9)

wherer(k) denotes the overall probability of sources being in stateThis probability is found from the
multi-binomial distribution:
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5 Performance measures

In this subsection we present formulas for the buffer overfimobability, fluid loss probability, and mean
waiting time in the queue.
The buffer overflow probabilityz(z) = Pr(Q > z) can be written as

G(r) =1-) Fi(x) (11)

kesS

The overall fluid loss probability;, . is defined as the fraction lost information to offered infatian. Loss
can only take place when the buffer is at maximum and the irgtetis larger than the output rate. Therefore
we get:
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The buffer overflow probability is an upper bound of the fluddd probability. The fluid loss probabilipy,ss (7)
for sources in clasg is the fraction between lost clagsnformation to the offered classinformation, and is
therefore given as

(12)
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The distribution of queue length is given by

PHQ < a) =) Fi() (14)

kes
The mean queue length is given by
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whereFy (B—) is defind agim,_. g Fx(x). The mean queueing delay for cI@st, is obtained from Little’s
formula:

e Q
W, = : 16
)T N o) (o)
wherem; denotes the mean arrival rate of a source from class
Ay
=, 17
mj; = Pj a; + B; (17)
6 Eigenvalues and eigenvectors
The eigenvalue for state can be found by solving the algebraic equatfdn(k)) = g(z(k)) where
N N,
f(z(k)) (C =) i) =D 5 i+ ) (18)
=1 i=1
K N,
g(z(k) =Y (ki — 71)\/(z(k)pi + B; — ;)2 + 4 f; (19)

The eigenvectopy corresponding to the eigenvalugk) is given as the coefficients in the following poly-
nomial in K variables:

Pr = H(Nv: —ri(2)F(N; = si(2) Nk (20)

where

—(2pi + Bi — o) + /(2pi + Bi — )2 + 4o B
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87,(21) — _(sz + 67, - ai) - \/2(sz + ﬁi — ai)Q + 4aiﬁi (22)

7 Discussion

The size of the state space for the fluid flow modeNis = |S| = Hfil(Ni + 1). As far as computational
complexity is concerned, is is dominated by the calculatitme coefficients from the boundary conditions.
The coefficients are found by solving a set/¥f linear equations. This system of equations can be solved
by Gauss elimination or, which can be more efficient, by somiive method. In any case, the associated
complexity is in the order oO(N?2). Hence, the complexity of the fluid flow model increases vest fvith



increasing number of class&Sand increasing class siz&g. Therefore, the fluid flow model is only considered
to be useful as a reference model, and not as a basis for ireptation of call admission control in real multi-
service networks.
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