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1 Introduction

The original fluid flow model for the FIFO queue with constant service rate was proposed by Kosten [2] and
further developed by Anick, Mitra and Sondhi [1]. The tradional assumption in fluid flow models is exponen-
tially distributed acivity periods. Kosten and AMS presented formulas for the fluid overflow probability of the
infinite FIFO queue. Tucker [4] and Jacobsen and Dittman [5] derived a formula for the fluid loss probability
of the finite homegeneous and heterogeneous FIFO queue, respectively. Tucker also presents a formula for the
delay distribution for a homogeneous FIFO queue. This note derives the mean delay in a heterogeneous finite
FIFO queue. Tne fluid flow literature does not seem to contain this result.

2 Traffic assumption

We consider a FIFO system that is offered traffic fromK classes. The capacity of the system is denotedC
[Mbps]. The buffer capacity is denotedB [Mbit]. The j-th class,j ∈ J = {1, . . . , K}, is characterized by the
following:

• Number of calls:Nj ,

• Peak bit rate requirement:pj [Mbps],

• OFF to ON state transition rate:αj [s−1],

• ON to OFF state transition rate:βj [s−1],

3 Model

The buffer is modeled as a fluid reservoir with a hole in the bottom and arriving information is modeled as a fluid
running into the reservoir. Letj ∈ J denote the index of an arbitrary class. Let the stochastic variablesΣ and
Q denote the stationary state of the system fluid process, and the queue length, respectively. Letk = (kj)j∈J

denote the fluid state vector, wherekj = kj(t) denotes the number of sources in their ON state at timet.
Vectors and matrices will appear in bold letter such that they can be distinguished from numbers, functions etc.
Let p = (p1, ..., pK) denotes the peak rate vector for the sources and by the scalarproduct ofk andp we mean:
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a(k) = k · p =

K
∑

i=1

kipi (1)

which is the total input rate in statek.
The fluid state space is defined by the set:

S = {k = (kj)j∈J : 0 ≤ kj ≤ Nj , j ∈ J} (2)

The average load on the system is

ρ =

∑K

i=1 Nipi
αi

αi+βi

C
(3)

We assume the average input rate to be smaller than the outputcapacity, i.e.ρ < 1.
The sample path description of the buffer dynamics is:

dQ/dt =







a(t) − C if Q(t) > 0
(a(t) − C))+ if Q(t) = 0
(a(t) − C)− if Q(t) = B

(4)

where generally(x)+ = max(x, 0) and(x)− = min(x, 0) denotes the positive and negative part ofx, respec-
tively, anda(t) is the total arrival rate at timet.

Let F(x) = {Fk(x)}k∈S denote the stationary buffer distribution column vector, whereFk(x) = Pr(Σ =
k, Q ≤ x),k ∈ S, 0 ≤ x ≤ B. The system can be described by the following Kolmogorov differential equation
[1]:

D
d
dx

F(q) = MF(x), 0 < x < B, (5)

whereD is a diagonal matrix with entry(k,k) equal to

dk = (

K
∑

i=1

piki − C) (6)

and where entry(k,n) in M looks as follows:

m(k,k) = −

K
∑

i=1

(Ni − ki)αi + kiβi, for k ∈ S

m(k,k1,...,ki−1,...,kK) = (Ni − βi + 1)αi, for k ∈ S (7)

m(k,k1,...,ki+1,...,kK) = (ki + 1)βi, for k ∈ S

4 Solution

The solutionF(x) = (Fk(x))k∈S is obtained from a spectral expansion:

Fk(x) =
∑

n∈S

an exp(z(n)x)(ϕn)k (8)
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where{z(n)} are the solution to the generalized eigenvalue problemzDϕ = Mϕ. In practice, the eigen-
value for statek is found by solving a non-linear algebraic equation. The eigenvectorϕn corresponding to the
eigenvaluez(n) is given by the coefficients of certain polynomial inK variables.

The coefficientsak are found by means of the initial condition [5]:

Fk(0) = 0, a(k) > C

0 = uk = π(k) − limx→BFk(x), a(k) < C

(9)

whereπ(k) denotes the overall probability of sources being in statek. This probability is found from the
multi-binomial distribution:

π(k) =
∏

j∈J

(

Nj

kj

) (

αj

αj + βj

)kj
(

βj

αj + βj

)xj−kj

(10)

5 Performance measures

In this subsection we present formulas for the buffer overflow probability, fluid loss probability, and mean
waiting time in the queue.

The buffer overflow probabilityG(x) = Pr(Q > x) can be written as

G(x) = 1 −
∑

k∈S

Fk(x) (11)

The overall fluid loss probabilityploss is defined as the fraction lost information to offered information. Loss
can only take place when the buffer is at maximum and the inputrate is larger than the output rate. Therefore
we get:

ploss =

∑

{k|k·p>C}(k · p− C)uk

∑K

i=1 Nipi
αi

αi+βi

(12)

The buffer overflow probability is an upper bound of the fluid loss probability. The fluid loss probabilityploss(j)
for sources in classj is the fraction between lost classj information to the offered classj information, and is
therefore given as

ploss(j) =

∑

{k|k·p>C}
kjpj

k·p (k · p − C)uk

∑K

i=1 Nipi
αi

αi+βi

(13)

The distribution of queue length is given by

Pr(Q ≤ x) =
∑

k∈S

Fk(x) (14)

The mean queue length is given by
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Q =

∫ B

0

x
dPr(Q ≤ x)

dx
dx =

∑

k∈S

{

[xFk(x)]B−
0 −

∫ B−

0

Fk(x)dx + Buk

}

(15)

whereFk(B−) is defind aslimx→B Fk(x). The mean queueing delay for classj, W j , is obtained from Little’s
formula:

W j =
Q

Njmj(1 − ploss(j))
(16)

wheremj denotes the mean arrival rate of a source from classj:

mj = pj

αj

αj + βj

(17)

6 Eigenvalues and eigenvectors

The eigenvalue for statek can be found by solving the algebraic equationf(z(k)) = g(z(k)) where

f(z(k)) = z(k)(C −

K
∑

i=1

Ni

2
pi) −

K
∑

i=1

Ni

2
(αi + βi) (18)

g(z(k)) =

K
∑

i=1

(ki −
Ni

2
)
√

(z(k)pi + βi − αi)2 + 4αiβi (19)

The eigenvectorϕk corresponding to the eigenvaluez(k) is given as the coefficients in the following poly-
nomial inK variables:

pk =

K
∏

i=1

(Ni − ri(z))k
i (Ni − si(z))Ni−ki (20)

where

ri(z) =
−(zpi + βi − αi) +

√

(zpi + βi − αi)2 + 4αiβi

2αi

(21)

si(z) =
−(zpi + βi − αi) −

√

(zpi + βi − αi)2 + 4αiβi

2αi

(22)

7 Discussion

The size of the state space for the fluid flow model isNs = |S| =
∏K

i=1(Ni + 1). As far as computational
complexity is concerned, is is dominated by the calculationof the coefficientsak from the boundary conditions.
The coefficients are found by solving a set ofNs linear equations. This system of equations can be solved
by Gauss elimination or, which can be more efficient, by some iterative method. In any case, the associated
complexity is in the order ofO(N3

s ). Hence, the complexity of the fluid flow model increases very fast with
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increasing number of classesK and increasing class sizesNi. Therefore, the fluid flow model is only considered
to be useful as a reference model, and not as a basis for implementation of call admission control in real multi-
service networks.
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