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1 Introduction

This paper describes a method for calculating key performance measures of class-based GPS systems offered
many fluid Markov sources. The task is decoupled into a set of single queue problems, which are analysed using
a lower bound model outlined by Presti, Zhang amd Towsley [10]. The upper bound model presented in the
same reference is omitted for simplicity reasons.

2 Traffic assumption

We consider a class-based GPS system that is offered traffic from K QoS classes. The capacity of the link is
denotedC [Mbps]. The weight of queuei is denotedφi and the buffer capacity is denotedBi [Mbit]. The i-th
class,i ∈ I = {1, . . . , K}, is characterized by the following:

• Number of calls:Ni,

• Peak bit rate requirement:pi [Mbps],

• OFF to ON state transition rate:αi [s−1],

• ON to OFF state transition rate:βi [s−1],

In order to have a stable system we assume the total offered mean rate is is less than the link capacity:

∑

i∈I

Nimi < C, (1)

wheremi = pi
αi

αi+βi
.

3 Model

Each buffer is modeled as a fluid reservoir with a hole in the bottom and arriving information is modeled
as a fluid running into the reservoir. We model the input from classi as a Markov modulated fluid source
characterized by the pair(M(i), λ(i)), with M

(i) being the irreducible generator of the Markov chain on state
spaceS(i) = {1, · · · , Ni} andλ(i) the rate vector. Let the stochastic variablesΣ andQi denote the stationary
state of the system fluid process, andi-th queue length, respectively.
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The sample path description of the buffer dynamics is:

dQi

dt
=







ri(t) − si(φ, t) if Qi(t) > 0
(ri(t) − si(φ, t))+ if Qi(t) = 0
(ri(t) − si(φ, t))− if Qi(t) = Bi

(2)

where generally(x)+ = max(x, 0) and(x)− = min(x, 0) denotes the positive and negative part ofx, respec-
tively, ri(t) andsi(φ, t) denote the arrival rate and the service rate, respectively,at timet.

Thearrival rate at timet is ri(t) = ki(t)pi. Theservice rate at timet is:

si(φ, t) =

{

gi + φi
∑

i∈J
φi1Qi(t)>0

∑

i∈J\{j} ri(t), Qi(t) > 0,

gi, Qi(t) = 0,
(3)

whereri(t) = (gi − ri(t))
+
1Qi(t)=0 denotes theresidual service rate, andgi = φic denotes the guaranteed

minimum service rate. Thedeparture rate represents the service rate actually used.
When the queue is backlogged,i.e.Qi(t) > 0, classi will make full use of the available service rate.

When the queue is empty, i.e.Qi = 0, and input rateri(t) is less than the minimum service rategi, the excess
(residual) service rate is shared among the other classes with backlogged queues. The sharing of residual service
rate among the backlogged classes makes the system of differential equations coupled. To simplify the analysis,
the system of differential equations can bedecoupled into K independent differential equations by imposing
assumptions on the queue states. The queue lengthQ̃i(t) in a decoupled differential equation is either a lower
or upper bound of the real queue lengthQi(t).

4 Analysis

4.1 Statistical multiplexing system with modulated service process

The decoupled multiplexing system with modulated service process is very similar to the producer-consumer
system studied by Mitra [7]. The queue dynamics follows the following sample path equation

dQ

dt
= λ

(a)

Σ(a)(t)
− [C − λ

(s)

Σ(s)(t)
] (4)

where(λ
(a)

Σ(a)(t)
, λ

(s)

Σ(s)(t)
) is a pair of random variables representing the states of the arrival process and the

service process at timet. By considering (4) it is clear that the system is equivalentto a statistical multiplex-
ing system with constant service rateC, the input of which is produced by the superposition of the Markov
modulated fluid sources(M(a), λ(a)) and(M(s), λ(s)).

4.2 Lower bound model

Under the assumption that the queue for classj ∈ I \{i} is always empty, the service process of classi becomes

s̃i(t) =

{

gi +
∑

j∈I\{i} rj(t) = C −
∑

j∈I\{i} r̃j(t), Qi(t) > 0,

gi, Qi(t) = 0,
(5)

wherer̃j(t) = min(rj(t), gj). In reality, the queue of classj may sometime be busy, resulting in zero residual
service rate. Hence, the service processs̃i(t) provides a lower bound of the queue length. The arrival process for
classi is described by the pairM(i), λ(i) and the modulating process by the pair(M̃(i), λ̃(i)). According to the

expression for service rate, it follows thatM̃
(i) = M

(i) andλ̃(i) = {λ̃
(i)
1 , · · · , λ̃

(i)
Ni

} whereλ̃
(i)
s = min(λ

(i)
s , gi),

1 ≤ s ≤ Ni.
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4.3 System equation

Let Fi(x) = {Fi(k, x)}k∈S denote the stationary buffer distribution column vector, whereFi(k, x) = Pr(Σ =
k, Qi ≤ x),k ∈ S, 0 ≤ x ≤ Bi. The (decoupled) lower bound model fullfils the following Kolmogorov
differential equation [1]:

Di
d
dx

Fi(x) = MiFi(x), 0 < x < Bi, (6)

whereDi denotes the drift matrix andMi the generator matrix.
The drift matrix is defined byDi = Λ

(a)
i ⊖ Λ

(s)
i where⊖ denotes the Kronecker difference,Λ

(a)
i =

diag(λ(i)) denotes the arrival rate matrix andΛ(s)
i = diag(λ̃(i)) denotes the service rate matrix. The generator

matrix for the superposition of the arrival and service fluidprocess is defined asMi = M
(i) ⊕ M̃

(i), where⊕
denotes the Kronecker sum.

5 Solution

The solution to the differential equation for classi in the decoupled GPS system is given by the spectral expan-
sion:

Fi(x) =
∑

k∈S

ai(k) exp(zi(k)x)ϕi(k) (7)

whereai(k) are scalar cofficients found from boundary conditions, andzi(k), ϕi(k) are eigenvalues and (left)
eigenvectors, respectively, found by solving the generalized eigenvalue problemziϕiDi = ϕiMi.

The coefficientsai(k) can be found in at least two ways. One method finds the set of exact coefficients
ai(k, Bj) by solving a linear equation system formulated from the boundary condition [5]:

∑

k∈S

ai(k, Bi)ϕi(k) = 0, ri(ki) > si(φ, k̃i) (8)

∑

k∈S

ai(k, Bi) exp(zi(k)Bi)ϕi(k) = πi(k), ri(ki) < si(φ, k̃i) (9)

whereki,k̃i denotes the state of the arrival and service process for class i, andπi(k) denotes the overall proba-
bility of sources being in statek. This probability is found from the multi binomial distribution:

πi(k) =
∏

j∈J

(

Ni

ki

) (

αi

αi + βi

)ki
(

βi

αi + βi

)Ni−ki

(10)

For largeBi, the exponential functionexp(zi(k)Bi) in (9) may overflow for positive eigenvalues. As
only ai(k, Bi) exp(zi(k)Bi) rather thanai(k, Bi) is needed to compute packet loss, this problem is overcome
by solving forai(k, Bi) exp(zi(k)Bi) instead ofai(k, Bi) in (8) and (9). In practice, this means removing
exp(zi(k)Bi) from (9) and insertingexp(−zi(k)Bi) in (8), thus turning the potential overflow into a potential
underflow [11].

Individual approximate coefficientsai(k, 0) can be calculated directly from the diagonal elements of the
drift matrix Di, the eigenvectorsϕi(k), and the overall probabilitiesπi(k) as follows [2]:
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ai(k, 0) =

∑

n:li(φ,n)<0 di(n)ϕi(k)(n)
∑

n∈S
di(n)πi(n)−1[ϕi(k)(n)]2

(11)

whereli(φ,k) = ri(ki) − si(φ, k̃i) denotes the fluid loss rate.

6 Fluid performance measures

In this section we present performance measures for the lower-bound fluid GPS model.

6.1 Buffer overflow probability

6.1.1 Exact formula

The buffer overflow probabilityGi(x) = P(Qi > x) can be written as

Gi(x) = 1 −
∑

k∈S

Fi(k, x) (12)

6.1.2 Asymptotic approximation

The lower bound procedure proposed in the previous section assume a complete analysis of the decomposed
bounding system. As the dimension of the system grows, this becomes increasingly expensive in terms of
computational cost, especially when performed on-line. Toremedy the situation, we use the refined effective
bandwidth approximation (REB). Namely, we approximate thequeue length of classi by the formula:

Gi(x) ≈ Liexp(zi(0)x) (13)

whereLi is an appropriate prefactor andzi(0) is the dominant eigenvalue of the system matrix in question.As
whenx = 0, the approximation yields Pr(Qi > 0) ≈ Li, thusLi approximates the probability that the buffer
is not empty. Here, we calculateLi by simply computing the probability that the input rateri(ki) exceeds the
service ratesi(φ, k̃i) The dominant eigenvalue is the unique solution to the equation:

g(a)(z) + g(s)(z) = C (14)

whereg(i) is the effective bandwidth of sourcei ∈ {a, s}, i.e. the maximum real eigenvalue of the matrix(Λ(i)−
1
zM

(i)). Computing the maximum real eigenvalue of irreducible, essentially nonnegative matrices is almost
identical to the task of computing the Perron-Frobenius eigenvalues of irreducible, nonnegative matrices, and
various standard, simple techniques are available. In the special case of the arrival process being a superposition
of ON/OFF sources with exponentially distributed activityperiods,g(a)(z) in (14) is given by:

g(a)(z) =
Ni

2z

[

zpi + βi + αi −
√

(zpi + βi − αi)2 + 4αiβi

]

(15)
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6.2 Fluid loss probability

6.2.1 Exact formula

The overall fluid loss probabilityploss is defined as the fraction lost information to offered information. Loss
can only take place when the buffer is at maximum and the inputrate is larger than the output rate. Therefore
we get:

ploss,i =
1

Nimi

∑

k:li(φ,k)>0

li(φ,k)ui(k) (16)

whereui(k) = πi(k) − limx→Bi
Fi(k, x).

6.2.2 Segarra-Haro approximation

Segarra and Haro have proposed following upper bound for thefluid loss probability [9]:

ploss,i =
A1,i(φ)

1+(A2,i(φ)/A3,i(φ)) exp(−zi(0)x) (17)

where coefficientsA1,i(φ),A2,i(φ), andA3,i(φ) for a GPS system are defined by:

A1,i(φ) =
1

Nimi

∑

k∈S

li(φ,k)πi(k)

A2,i(φ) =
∑

k:li(φ,k)<0

li(φ,k)πi(k)

A3,i(φ) =
∑

k:li(φ,k)>0

li(φ,k)πi(k)

(18)

6.2.3 Kvols-Blaabjerg approximation

Kvols and Blaabjerg have proposed the following upper boundfor the fluid loss probability [6]:

ploss,i = Ai(φ) exp(zi(0)x) (19)

where the coefficientAi(φ) denotes the fluid loss probability in a bufferless GPS system:

Ai(φ) =
1

Nimi

∑

k:li(φ,k)>0

li(φ,k)πi(k) (20)

6.3 Fluid mean delay

6.3.1 Exact formula

The distribution of queue length for classi is given by

Pr(Qi ≤ x) =
∑

k∈S

Fi(k, x) (21)

The mean queue length is given by
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Qi =

∫ B

0

x
dPr(Qi ≤ x)

dx
dx =

∑

k∈S

{

[xFi(k, x)]B−
0 −

∫ B−

0

Fi(k, x)dx + Bui(k)

}

(22)

whereFi(k, B−) is defind aslimx→B Fi(k, x). The mean queueing delay for classi, W i, is obtained from
Little’s formula:

W i =
Qi

Nimi(1 − ploss(i))
(23)

6.3.2 Asymptotic approximation

From the dominated eigenvaluezi(0) and its eigenvectorϕi(0) the buffer distribution can be approximated by

F̃i(k, x) = ai(0) exp(zi(0)x)ϕi(0)(k) (24)

Inserting this expression in the formula for mean queue length gives:

Qi =

∫ B

0

x
dPr(Qi ≤ x)

dx
dx ≈

∑

k∈S

{

[xF̃i(k, x)]B−
0 −

∫ B−

0

F̃i(k, x)dx + Bũi(k)

}

(25)

which finally is inserted in Little’s formula to yield the approximate mean fluid delay.
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