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1 Introduction

This paper describes a method for calculating key perfoomameasures of class-based GPS systems offered
many fluid Markov sources. The task is decoupled into a sehgfesqueue problems, which are analysed using
a lower bound model outlined by Presti, Zhang amd Towsley. [Tbe upper bound model presented in the
same reference is omitted for simplicity reasons.

2 Traffic assumption

We consider a class-based GPS system that is offered tnaffic & QoS classes. The capacity of the link is
denoted” [Mbps]. The weight of queugis denoteds; and the buffer capacity is denoté] [Mbit]. The i-th
class;i € I ={1,..., K}, is characterized by the following:

e Number of callsV;,
e Peak bit rate requiremens; [Mbps],
e OFF to ON state transition rate; [s™'],

e ON to OFF state transition ratg; [s~!],

In order to have a stable system we assume the total offerad raée is is less than the link capacity:

Z N;m; < C, (1)
el

wherem; = p; ;55

3 Model

Each buffer is modeled as a fluid reservoir with a hole in th&dmo and arriving information is modeled
as a fluid running into the reservoir. We model the input frdassi as a Markov modulated fluid source
characterized by the paidM (¥, \(¥), with M(9) being the irreducible generator of the Markov chain on state
spaceS() = {1,---,N;} and A\ the rate vector. Let the stochastic variabfeand@; denote the stationary
state of the system fluid process, arth queue length, respectively.



The sample path description of the buffer dynamics is:

dQ; ri(t) — si(¢,t) it Qi(t) >0
=8 ) = s(e ) 0 Qit) =0
(ri(t) — si(¢, 1))~ if Qi(t) = B
where generallyz)* = max(z,0) and(z)~ = min(z, 0) denotes the positive and negative part:pfespec-
tively, r;(t) ands; (¢, t) denote the arrival rate and the service rate, respectizetinet.

Thearrival rateat timet is r;(t) = k;(¢t)p;. Theservicerate at timet is:

) i . .
Gi, i(t) = 07

wherer;(t) = (g; — 7:(t)) " 1¢,1)=0 denotes theesidual service rate, andg; = ¢;c denotes the guaranteed
minimum service rate. Thaeparture rate represents the service rate actually used.

When the queue is backlogged,i.€;(t) > 0, classi will make full use of the available service rate.
When the queue is empty, i.€), = 0, and input rate-;(¢) is less than the minimum service ratge the excess
(residual) service rate is shared among the other classebacklogged queues. The sharing of residual service
rate among the backlogged classes makes the system oédiffdrequations coupled. To simplify the analysis,
the system of differential equations can dieeoupled into K independent differential equations by imposing
assumptions on the queue states. The queue lépgth in a decoupled differential equation is either a lower
or upper bound of the real queue len@(¢).
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4  Analysis

4.1 Statistical multiplexing system with modulated servie process

The decoupled multiplexing system with modulated servigE@ss is very similar to the producer-consumer
system studied by Mitra [7]. The queue dynamics follows thi#ving sample path equation
dq

E = )‘g()a)(f,) - [C - )‘S()ﬁ(t)] (4)

where()\(;()a>(t), )\(Xf()s)(t)) is a pair of random variables representing the states offialbprocess and the
service process at time By considering (4) it is clear that the system is equivaterd statistical multiplex-
ing system with constant service ratg the input of which is produced by the superposition of thekda

modulated fluid source@I(®), \(*)) and(M (), (),

4.2 Lower bound model

Under the assumption that the queue for classl \ {i} is always empty, the service process of cldsscomes

9i, Qz (t) = 0)
where7;(t) = min(r;(t), g;). In reality, the queue of clagsmay sometime be busy, resulting in zero residual
service rate. Hence, the service procgss) provides a lower bound of the queue length. The arrival e &ar
classi is described by the paivI("), A() and the modulating process by the p@f (), \()). According to the
expression for service rate, it follows tHet®) = M) andA®) = {3, A } wheredl” = min(A\”, g;),
1<s< Nz

(®)



4.3 System equation

LetF,(z) = {Fi(k, z) }xes denote the stationary buffer distribution column vectdreveF; (k, z) = Pr(X =
k,Q; < z),k € S,0 < z < B;. The (decoupled) lower bound model fullfils the following IK®mgorov
differential equation [1]:

d
dx
whereD; denotes the drift matrix and1; the generator matrix.

The drift matrix is defined byD; = A!” & A" wherec denotes the Kronecker differenca” =
diag \(¥)) denotes the arrival rate matrix alzkf) = diag \() denotes the service rate matrix. The generator

matrix for the superposition of the arrival and service fpidcess is defined ad; = M® ¢ M), where®
denotes the Kronecker sum.

D;—F;(z) = M;F;(z),0 <z < B, (6)

5 Solution

The solution to the differential equation for clasa the decoupled GPS system is given by the spectral expan-
sion:

Fi(w) = Y ai(k) exp(z(k)z)ei (k) ()

kes

wherea; (k) are scalar cofficients found from boundary conditions, aiR), ¢;(k) are eigenvalues and (left)
eigenvectors, respectively, found by solving the geneedleigenvalue problemy;D; = ¢; M.

The coefficients:; (k) can be found in at least two ways. One method finds the set @t epefficients
a;(k, B;) by solving a linear equation system formulated from the lalaup condition [5]:

> ai(k, Bi)pi(k) =0, ri(ki) > si(¢, ki) (8)
keS
> ai(k, Bi) exp(zi(k)Bi)pi(k) = mi(k), ri(ki) < si(¢, ki) €)

keS

wherek; k; denotes the state of the arrival and service process fa@ ¢lasdr; (k) denotes the overall proba-
bility of sources being in statie. This probability is found from the multi binomial distriban:

N; a \M (g \TE
m‘(k):H <k7,) (m> (Ozi-i—ﬂi) 0

je€J

For large B;, the exponential functiorexp(z;(k)B;) in (9) may overflow for positive eigenvalues. As
only a;(k, B;) exp(z;(k)B;) rather tharu;(k, B;) is needed to compute packet loss, this problem is overcome
by solving fora;(k, B;) exp(z;(k)B;) instead ofa;(k, B;) in (8) and (9). In practice, this means removing
exp(zi(k)B;) from (9) and insertingxp(—z; (k) B;) in (8), thus turning the potential overflow into a potential
underflow [11].

Individual approximate coefficients; (k, 0) can be calculated directly from the diagonal elements of the
drift matrix D, the eigenvectorg; (k), and the overall probabilities; (k) as follows [2]:



Zn:l,i(¢,n)<0 d; (n)<p1 (k) (Il)
> nes di(m)mi(n) =i (k) (n)]?
wherel; (¢, k) = r;(k;) — s:(¢, k;) denotes the fluid loss rate.

a;(k,0) = (11)

6 Fluid performance measures

In this section we present performance measures for thadbaend fluid GPS model.

6.1 Buffer overflow probability
6.1.1 Exactformula

The buffer overflow probability7; (x) = P(Q; > x) can be written as

Gi(x) =1~ Fi(k,z) (12)

kesS

6.1.2 Asymptotic approximation

The lower bound procedure proposed in the previous sectisanae a complete analysis of the decomposed
bounding system. As the dimension of the system grows, thi®fines increasingly expensive in terms of

computational cost, especially when performed on-lineréfoedy the situation, we use the refined effective
bandwidth approximation (REB). Namely, we approximategheue length of classby the formula:

whereL; is an appropriate prefactor ang(0) is the dominant eigenvalue of the system matrix in questan.
whenz = 0, the approximation yields/RQ; > 0) ~ L,, thusL; approximates the probability that the buffer
is not empty. Here, we calculafg by simply computing the probability that the input raték;) exceeds the
service rates; (¢, k;) The dominant eigenvalue is the unique solution to the eqnati

) +9¥ () =C (14)

whereg(?) is the effective bandwidth of sourées {a, s}, i.e. the maximum real eigenvalue of the mafux?) —
%M(i)). Computing the maximum real eigenvalue of irreducibleeresally nonnegative matrices is almost
identical to the task of computing the Perron-Frobeniusmiglues of irreducible, nonnegative matrices, and
various standard, simple techniques are available. Ingbeial case of the arrival process being a superposition
of ON/OFF sources with exponentially distributed actiigriods g(® (z) in (14) is given by:

9 (z) = 2% 2pi + Bi + i — /(2pi + Bi — i)® + 40@@} (15)



6.2 Fluid loss probability
6.2.1 Exactformula

The overall fluid loss probability|yggis defined as the fraction lost information to offered infatron. Loss
can only take place when the buffer is at maximum and the irgtetis larger than the output rate. Therefore
we get:

1
Plossi = Nor. > Ll kui(k) (16)
U ki (6,k) >0
whereu; (k) = m;(k) — lim,_ g, F; (k, x).

6.2.2 Segarra-Haro approximation

Segarra and Haro have proposed following upper bound fdiufteloss probability [9]:

_ Ai1i(9)
Ploss: — 1+(A2,1-(¢)/As,17:(¢))exp(—Zi(O)m) (17)

where coefficientsl; ;(¢),A2:(¢), andAs ;(¢) for a GPS system are defined by:

1

Ari(o) = N, Zli(¢7 k)m;i(k)
7 kes

Azi(9) = PORRACREALY (18)
k:l;(¢,k)<0

Asi(¢) = > L K)m(k)
kil; (6,k)>0

6.2.3 Kvols-Blaabjerg approximation

Kvols and Blaabjerg have proposed the following upper bdonthe fluid loss probability [6]:
Ploss: = Ai(¢) exp(2i(0)z) (19)

where the coefficientl;(¢) denotes the fluid loss probability in a bufferless GPS system

4@ =—— 3 L6 Wmk) (20)

ey
YKl (¢,k)>0

6.3 Fluid mean delay
6.3.1 Exactformula

The distribution of queue length for class given by
PHQi <) =) Fi(k,z) (21)

The mean queue length is given by



B—

0

B <z
0. :/0 x%dx: Z {[xFi(k,x)]éB_ —

Fi(k,z)dz + Bui(k)} (22)
kes

where F;(k, B—) is defind adim, .5 F;(k,z). The mean queueing delay for claisdV;, is obtained from
Little’s formula:

= Q,
Wi = N = poss @)

(23)

6.3.2 Asymptotic approximation

From the dominated eigenvalug0) and its eigenvectap; (0) the buffer distribution can be approximated by

Fi(k, z) = a;(0) exp(2;(0)a):(0) (k) (24)
Inserting this expression in the formula for mean queuettegiyes:

B < -
Q, :/0 w%dxaﬁ Z {[xFi(k,:L‘)]ég —

keS

B—
Fi(k, z)dz + Bﬂi(k)} (25)
0

which finally is inserted in Little’s formula to yield the apypximate mean fluid delay.
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