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1 Introduction

The network is assumed to operate under on demand call set up,i.e call requests are lost
when the network is found busy upon call arrival. The routingcontroller for each OD pair
observes the network link states every time periodτ seconds. Between observations calls are
accepted and completed on different paths that results in random link state increments and
decrements, respectively. Hence, the network state between two observations is uncertain.
The latest state observation on links is denotedxs. The corresponding decomposed network
state is denotedz = {xs}. At time t ∈ [0, τ) seconds after the last state observation the link
s has state distributionQs(ys|xs, t, a) (known as belief state).

The partially observable Markov decision process (POMDP) associated with the periodic
state observations is non-Markovian. On the other hand, thebelief MDP formed from the
belief state distribution is Markov [1]. We refer only to thestates between state updates via
the belief state distribution. In particular we compute theexact time- and state-dependent
randomized policy from the belief state distribution and the path shadow prices (obtained
from the relative values) determined from the MDP with real-time state observations. We
motivate the choice of the MDP with thecertainty equivalence principlefrom stochastic
control which allows the separation of control and estimation [3]. In other words the control
problem with unknown realizations (from known probabilitydistributions) can be formed
by optimizing the control first under perfect forsight and then replacing the unknown future
values by optimal forecasts.

The distributionQs(ys|xs, t, a) can be obtained, for each link statexs, as solution to a
differential equation system. The computations should be done at each policy iteration step
using a numerical differential equation solver (e.g. RungeKutta).

In this paper we outline five types of routing policies with increasing level of performance:

• static randomized policy,

• dynamic state-dependent deterministic policy,

• static state-dependent randomized policy,

• Approximate dynamic state-dependent randomized policy,

• Exact dynamic state-dependent randomized policy (optimal).
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The state-dependent randomized routing policyπ(z, t) require a large computational effort
if applied on-line for each call arrival. A natural approachis to compute the routing policy
off-line (once each policy iteration step). However, the the randomization weights must be
computed for each combination of link statesz = {xs} which makes the computational
complexity prohibitive. To obtain a feasible solution of state-dependent randomized routing
the probability that a given path has lower path shadow pricethan another path can not be
computed in an exact manner. Also, note that the off-line computation requires discretization
of time for the dynamic policy.

2 Traffic assumptions

The network is offered traffic fromK classes which are, for sake of simplicity, subject to
deterministic multiplexing. Thej-th class,j ∈ J = {1, . . . , K}, is characterized by the
following:

• Origin-destination (OD) node pair,

• Bandwidth requirementbj [Mbps],

• Poissonian call arrival process with rateλj [s−1],

• Exponentially distributed call holding time with mean 1/µj [s],

• Set of alternative routes,Wj,

• Reward parameterrj ∈ (0,∞), and

The classes are classified intoG bandwidth categories. Thei-th category,i ∈ I =
{1, . . . , G}, is characterized by:

• Bandwidth requirementbi [Mbps],

• Average mean call holding time 1/µi [s],

• Average reward parameterri.

3 Belief state model

The transient distributionQs(ys|xs, t, a) can be obtained, for each link statexs, as solution to
a differential equation system. With the assumptions on exponential service time distribution
and Poisson call arrivals we can write:

Qs(ys|xs, t + ∆t, a) =
Qs(ys|xs, t, a)[

∏

i∈I(1 − ys
i µi∆t)(1 − λs

i (y
s|xs, t, a)ai∆t) +

∏

i∈I ys
i µi∆tλs

i (y
s|xs, t, a)ai∆t]

+
∑

i∈I Qs(ys − δi|x
s, t, a)[λs

i (y
s − δi|x

s, t, a)ai∆t(1 − (ys
i − 1)µi∆t)]

+
∑

i∈I Qs(ys + δi|x
s, t, a)[(ys

i + 1)µi∆t(1 − λs
i (y

s + δi|x
s, t, a)ai∆t)

Qs(0|xs, t + ∆t, a) = Qs(0|xs, t, a)
∑

i∈I(1 − λs
i (0|x

s, t, a)ai∆t)
+

∑

i∈I Qs(δi|x
s, t, a)[µi∆t(1 − λs

i (δi|x
s, t, a)ai∆t)]
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where0 denotes the empty state vector andδi denotes a vector with zeros expected for a one
in positioni. According to Taylor series we have

Qs(ys|xs, t + ∆t, a) = Qs(ys|xs, t, a)
d
dt

Qs(ys|xs, t, a)∆t (1)

Combining the two equations above and letting∆t → 0 we have

d
dt

Qs(ys|xs, t, a) = −
∑

i∈I

(λs
i (y

s|xs, t, a)ai + ys
i µi)Q

s(ys|xs, t, a) +

+
∑

i∈I

Qs(ys − δi|x
s, t, a)λs

i (y
s − δi|x

s, t, a)ai +
∑

i∈I

Qs(ys + δi|x
s, t, a)(ys

i + 1)µi (2)

d
dt

Qs(0|xs, t, a) = −
∑

i∈I

λs
i (0|x

s, t, a)aiQ
s(0|xs, t, a) +

∑

i∈I

µiQ
s(δi|x

s, t, a) (3)

At t = 0 we know that the state isxs with full certainty so we have the following initial
condition:

Qs(xs|xs, 0, a) = 1;

Qs(ys|xs, 0, a) = 0, ys ∈ Xs \ {xs} (4)

The arrival rate in stateys to link s, given link statexs at the recent state update, is given
by:

λs
i (y

s|xs, t, a) = λs
i (x

s, π)Qs(ys|xs, t, a) (5)

Hence, the system of differential equations can be written:

d
dt

Qs(ys|xs, t, a) = −
∑

i∈I

λs
i (x

s, π)aiQ
s(ys|xs, t, a)2 −

∑

i∈I

ys
i µiQ

s(ys|xs, t, a) +

+
∑

i∈I

Qs(ys − δi|x
s, t, a)2λs

i (x
s, π)ai +

∑

i∈I

Qs(ys + δi|x
s, t, a)(ys

i + 1)µi (6)

d
dt

Qs(0|xs, t, a) = −
∑

i∈I

λs
i (x

s, π)aiQ
s(0|xs, t, a)2 +

∑

i∈I

µiQ
s(δi|x

s, t, a) (7)

This is a non-linear differential equation system which canbe solved by some numerical
method, e.g. the Runge-Kutta method.

4 Static randomized policy

The static routing policyπ for a classj call request is specified by the constant randomization
weightshk

j :
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hk
j = Pr

{

pk < pl, ∀l ∈ Wj \ {k},p
k < rj

}

(8)

wherepk denote the random path shadow price for pathk. The call request is rejected with
probabilityh0

j = 1 −
∑

k∈Wj
hk

j . The weights can be written:

hk
j =

∑

x1∈X1

· · ·
∑

xn∈Xnk

Pr
{

pk < pl, ∀l ∈ Wj \ {k},p
k < rj

}

nk
∏

s=1

Qs(xs) (9)

where pathk ∈ Wj consist ofnk links. Since paths are independent by assumption we have

hk
j =

∑

x1∈X1

· · ·
∑

xn∈Xnk

∏

l∈Wj\{k}

Pr
{

pk < pl
}

θ(rj − pk)
nk
∏

s=1

Qs(xs) (10)

whereθ(x) = 1 if x > 0 andθ(x) = 0 if x ≤ 0 andpk denotes the deterministic shadow
price for pathk in state(x1, . . . ,xnk). Let

F k
p
(v) = Pr{pk ≤ v} (11)

Define

Gk
p
(v) = 1 − F k

p
(v) (12)

By definition ofGk
p
(v) we have

Pr{pl > pk} = Gl
p
(pk) (13)

Which gives the result

hk
j =

∑

x1∈X1

· · ·
∑

xn∈Xnk

∏

l∈Wj\{k}

Gl
p
(pk)θ(rj − pk)

nk
∏

s=1

Qs(xs) (14)

The probabilityGl
p
(pk) can be obtained as:

Gl
p
(pk) =

∑

x1∈X1

· · ·
∑

x
nl∈Xnl

θ(pl(x1, . . . ,xnl) − pk)
nl
∏

s=1

Qs(xs) (15)

5 Dynamic deterministic policy

A simple deterministic policy with relatively low complexity is as follows. The new call is
then allocated to the path, among the set of feasible paths, with the largest positive average
path net-gaingk

j (z, t, π):

gk
j (z, t, π) = rj −

∑

s∈Sk

ps
i (x

s, t, π), (16)

The average link shadow pricesps
i (x

s, t, π) is given by:

ps
i (x

s, t, π) = rs
i (π) − gs

i (x
s, t, π), (17)

4



where the average link net-gaings
i (x

s, t, π) is obtained from the belief state distribution
Qs(ys|xs, t):

gs
i (x

s, t, π) =
∑

ys∈X

Qs(ys|xs, t, a)gs
i (y

s, π) (18)

and from the link net-gaings
i (y

s, π):

gs
i (y

s, π) = vs(ys + δi, π) − vs(ys, π), (19)

wherevs(ys, π) denotes the relative value in stateys of link s.

6 Static state-dependent randomized policy

The static state-dependent routing policyπ(z) for a classj call request is specified by the
randomization weightshk

j (z):

hk
j (z) = Pr

{

pk < pl, ∀l ∈ Wj \ {k},p
k < rj

}

(20)

wherepk denote the random path shadow price for pathk. The call request is rejected with
probabilityh0

j (z) = 1 −
∑

k∈Wj
hk

j (z). The weights can be written:

hk
j (z) =

∑

y1∈X1

· · ·
∑

yn∈Xnk

Pr
{

pk < pl, ∀l ∈ Wj \ {k}
}

θ(rj −pk)
nk
∏

s=1

1

τ

∫ τ

0

Qs(ys|xs, t, a)dt

(21)
where pathk ∈ Wj consist ofnk links andθ(x) = 1 if x > 0 andθ(x) = 0 if x ≤ 0. Since
paths are independent by assumption we have

hk
j (z) =

∑

y1∈X1

· · ·
∑

yn∈Xnk

∏

l∈Wj\{k}

Pr
{

pk < pl
}

θ(rj − pk)
nk
∏

s=1

1

τ

∫ τ

0

Qs(ys|xs, t, a)dt (22)

wherepk denotes the deterministic shadow price for pathk in state(y1, . . . ,ynk). Let

F k
p
(v) = Pr{pk ≤ v} (23)

Define

Gk
p
(v) = 1 − F k

p
(v) (24)

By definition ofGk
p
(v) we have

Pr{pl > pk} = Gl
p
(pk) (25)

Which gives the result
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hk
j (z) =

∑

y1∈X1

· · ·
∑

yn∈Xnk

∏

l∈Wj\{k}

Gl
p
(pk)θ(rj − pk)

nk
∏

s=1

1

τ

∫ τ

0

Qs(ys|xs, t, a)dt (26)

The probabilityGl
p
(pk) can be obtained as:

Gl
p
(pk) =

∑

y1∈X1

· · ·
∑

y
nl∈Xnl

θ(pl(y1, . . . ,ynl) − pk)
nl
∏

s=1

1

τ

∫ τ

0

Qs(ys|xs, t, a)dt (27)

The probabilityGl
p
(pk) consitutes a major computational burden.

7 Exact dynamic state-dependent randomized policy

The time- and state-dependent routing policyπ(z, t) for a classj call request is specified by
the randomization weightshk

j (z, t):

hk
j (z, t) = Pr

{

pk < pl, ∀l ∈ Wj \ {k},p
k < rj

}

(28)

wherepk denote the random path shadow price for pathk. The call request is rejected with
probabilityh0

j (z, t) = 1 −
∑

k∈Wj
hk

j (z, t). The weights can be written:

hk
j (z, t) =

∑

y1∈X1

· · ·
∑

yn∈Xnk

Pr
{

pk < pl, ∀l ∈ Wj \ {k}
}

θ(rj − pk)
nk
∏

s=1

Qs(ys|xs, t, a)

(29)
where pathk ∈ Wj consist ofnk links andθ(x) = 1 if x > 0 andθ(x) = 0 if x ≤ 0. Since
paths are independent by assumption we have

hk
j (z, t) =

∑

y1∈X1

· · ·
∑

yn∈Xnk

∏

l∈Wj\{k}

Pr
{

pk < pl
}

θ(rj − pk)
nk
∏

s=1

Qs(ys|xs, t, a) (30)

wherepk denotes the deterministic shadow price for pathk in state(y1, . . . ,ynk). Let

F k
p
(v) = Pr{pk ≤ v} (31)

Define

Gk
p
(v) = 1 − F k

p
(v) (32)

By definition ofGk
p
(v) we have

Pr{pl > pk} = Gl
p
(pk) (33)

Which gives the result

hk
j (z, t) =

∑

y1∈X1

· · ·
∑

yn∈Xnk

∏

l∈Wj\{k}

Gl
p
(pk)θ(rj − pk)

nk
∏

s=1

Qs(ys|xs, t, a) (34)
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The probabilityGl
p
(pk) can be obtained as:

Gl
p
(pk) =

∑

y1∈X1

· · ·
∑

y
nl∈Xnl

θ(pl(y1, . . . ,ynl) − pk)
nl
∏

s=1

Qs(ys|xs, t, a) (35)

8 Approximate dynamic state-dependent randomized pol-
icy

For every state of pathk the probabilityGl
p
(pk) that pathk has lower path shadow price than

the competing pathl must be computed The exact computation requiresO(Snl) operations
whereS denotes the maximum size of the state space of the links in path l.

One solution attempt is to represent each link state on the competing pathl by the equi-
librium distributionQs(xs):

Gl
p
(pk) =

∑

x1∈X1

· · ·
∑

x
nl∈Xnl

θ(pl(x1, . . . ,xnl) − pk)
nl
∏

s=1

Qs(xs) (36)

In this case the randomization weight for pathk only depend on the statez of this path,
and not on the states of the competing paths.
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