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1 Introduction

The network is assumed to operate under on demand call seéeuggll requests are lost
when the network is found busy upon call arrival. The routogtroller for each OD pair
observes the network link states every time periggconds. Between observations calls are
accepted and completed on different paths that resultsnithora link state increments and
decrements, respectively. Hence, the network state battve® observations is uncertain.
The latest state observation on links denotedk®. The corresponding decomposed network
state is denoted = {x°}. Attime¢ € [0, 7) seconds after the last state observation the link
s has state distributio@* (y*|x*, ¢, a) (known as belief state).

The partially observable Markov decision process (POMDBRBpeaiated with the periodic
state observations is non-Markovian. On the other handbdétief MDP formed from the
belief state distribution is Markov [1]. We refer only to thates between state updates via
the belief state distribution. In particular we compute éxact time- and state-dependent
randomized policy from the belief state distribution and ffath shadow prices (obtained
from the relative values) determined from the MDP with rexale state observations. We
motivate the choice of the MDP with theertainty equivalence principl&éom stochastic
control which allows the separation of control and estiorafB]. In other words the control
problem with unknown realizations (from known probabildistributions) can be formed
by optimizing the control first under perfect forsight andnireplacing the unknown future
values by optimal forecasts.

The distributionQ*(y*|x®,¢,a) can be obtained, for each link state as solution to a
differential equation system. The computations shoulddieedat each policy iteration step
using a numerical differential equation solver (e.g. Rukgt#a).

In this paper we outline five types of routing policies witki@asing level of performance:

e static randomized policy,

dynamic state-dependent deterministic policy,

static state-dependent randomized policy,

Approximate dynamic state-dependent randomized policy,

Exact dynamic state-dependent randomized policy (opjimal



The state-dependent randomized routing poti¢y, ¢) require a large computational effort
if applied on-line for each call arrival. A natural approastio compute the routing policy

off-line (once each policy iteration step). However, the tandomization weights must be
computed for each combination of link states= {x*} which makes the computational
complexity prohibitive. To obtain a feasible solution cdt&t-dependent randomized routing
the probability that a given path has lower path shadow pghea another path can not be
computed in an exact manner. Also, note that the off-linematation requires discretization

of time for the dynamic policy.

2 Traffic assumptions

The network is offered traffic fronk classes which are, for sake of simplicity, subject to
deterministic multiplexing. Thg-th class,j € J = {1,..., K}, is characterized by the
following:

e Origin-destination (OD) node pair,

Bandwidth requiremerit; [Mbps],

Poissonian call arrival process with ratg[s '],

Exponentially distributed call holding time with mean:1/s],

Set of alternative route$y’;,

Reward parameter; € (0, c0), and

The classes are classified into bandwidth categories. Theth category,i € [ =
{1,..., G}, is characterized by:

e Bandwidth requiremerit; [Mbps],
e Average mean call holding time7i/[s],

e Average reward parametey.

3 Belief state model

The transient distributio®*®(y*|x*®, t, a) can be obtained, for each link statg as solution to
a differential equation system. With the assumptions omegptial service time distribution
and Poisson call arrivals we can write:

Q*(y*|x®,t + At,a) =

Qs(ys|xs7 tv a) [Hiel(l - yiﬁzAt>(1 - )‘f(ys‘xs7 tv a)aiAt) + Hie[ yfﬁZAtAf (ys|xsv t? a)aiAt]
+ e @°(y° — aifx*, ta) [N (y* — 6ifx®, ¢, a)a; At(1 — (yf — 1T At)]

+ 2 ier @y + 6ilx*, £, @) [(y] + DI AL = X (y* +6i|x7, 1, a)a; At)

QS(O‘XS7 L+ Atv a) = QS(O‘Xsu t a) Zie[(l - )\f(O‘XS, t a)azAt)
+305er Q°(]x°, t, a) [ At (1 — AS(6;]x°, ¢, a)a; At)]
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where0 denotes the empty state vector andenotes a vector with zeros expected for a one
in position:. According to Taylor series we have

d
Q°(y°|x°, t + At,a) = Q°(y°|x’, t, a)ath(ys|xs, t,a)At Q)

Combining the two equations above and letting— 0 we have

GOt a) = =D (N a)as + yim)Q° (v X, t @) +
icl
+2 QY = Al L) (y” — dilx ta)a + ) Q'(y" + ailx ta)(y) + D (2)
i€l i€l

%QS(OIxS, ta) =—> XN(0x°,t,a)a;Q°(0[x°, t,a) + Y 7,Q°(6;]x°, 1, a) (3)

1el i€l

At t = 0 we know that the state ig® with full certainty so we have the following initial
condition:

Q°(x°|x*,0,a) = 1;
Q*(y*[x*,0,a) =0, y® € X°\ {x"} 4)

The arrival rate in statg® to link s, given link statex® at the recent state update, is given
by:

)‘f(ys‘xsvt7a) - )‘f(XSﬂT)QS(yS‘XS?tva) (5)
Hence, the system of differential equations can be written:

d
G Okt a) =N (x5, m)aQ (Y x, ta)t = Yy Q N (yoIxt, ta) +

el i€l
+ Z Qs(ys - 52“X57 t7 8)2)\5(X5, W)ai + Z Qs(ys + 6i|xs7 tu a)(yf + 1)ﬁz (6)
iel iel
d
aQS(O\X ta)=—Y AN(x°,maQ*(0x°,t,a)” + > 1,Q°(6;]x°, ¢, a) ()
el el

This is a non-linear differential equation system which t&nsolved by some numerical
method, e.g. the Runge-Kutta method.

4 Static randomized policy

The static routing policyt for a clasg call request is specified by the constant randomization
weightsh’:



0t = Pr{p* <p', vl e Wi\ {k},p" <r;} ©

wherep” denote the random path shadow price for patiThe call request is rejected with
probability 29 = 1 — 3>,y h. The weights can be written:

W= 3 - > Pr{pf<p Ve W\ {k},pF <TJ}HQS ) (9)

xleX!t xme X"k

where patht € WW; consist ofny, links. Since paths are independent by assumption we have

W= o > I pPr{pf <o HQ (10)

xleX! xme X"k leW;\{k}

wheref(z) = 1if 2 > 0 andf(x) = 0if + < 0 andp* denotes the deterministic shadow
price for pathk in state(x!, ..., x"*). Let

F(v) = Pr{p* < v} (11)
Define
Gh(v) =1 Fi(v) (12)
By definition of G} (v) we have
Prip' > p*} = G, (p") (13)

Which gives the result
=3 Y I GG HQS °) (14)
xleX! xme X"k leW;\{k}
The probabilityG, (p*) can be obtained as:

ny

G ) = > o > (x . x") =) [[ Q) (15)

xlex1 xMEeX™ s=1

5 Dynamic deterministic policy

A simple deterministic policy with relatively low complayiis as follows. The new call is
then allocated to the path, among the set of feasible pailis the largest positive average
path net-gairg” (z, t, )

gj(ztﬂ - Y Pt ), (16)

s€Sk

The average link shadow pricggx®, t, ) is given by:

pf(xsj t 7T) = Tf(ﬂ—) - gf(xsj t W)’ (17)
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where the average link net-gaij(x®, ¢, 7) is obtained from the belief state distribution

Q*(y*[x*, 1):
gGx )= Y QX' ta)g(y’, ) (18)
yseX

and from the link net-gaig;(y*, r):

gi(y*,m) = v (y* + 6, m) — v (y*, m), (19)

wherev*(y*®, 7) denotes the relative value in stateof link s.

6 Static state-dependent randomized policy

The static state-dependent routing poligyz) for a class; call request is specified by the
randomization weights (z):

hf(z) = Pr {pk <p' VleW;\{k},p" < rj} (20)

wherep” denote the random path shadow price for patfThe call request is rejected with
probabilityh}(z) = 1 — e, i (z). The weights can be written:

Mz =3 o Y Pr{pt<p Ve W\ (ko II ~ [ @ ay

ylex? ynexnk
(21)

where patht € W; consist ofn;, links andf(z) = 1if z > 0 andf(z) = 0 if x < 0. Since
paths are independent by assumption we have

Pi()= > -+ > 11 Pr{p <p} H /st\x t,a)dt (22)
ylex!? yreX™k 1eW;\{k}
wherep”® denotes the deterministic shadow price for path state(y!, . .., y"™*). Let
Fi(v) = Pr{p* < v} (23)
Define
Gh(v) =1—F}(v) (24)
By definition of G} (v) we have
Pr{p' > p"} =G, (p") (25)

Which gives the result



nkl

slT

W) = > - > I Gu("o(r; -

ylex? yreX™k leW;\{k}

~ [ @ tay (26)

The probabilityG, (p*) can be obtained as:

GLphy = S - X 0.y ml/TQ;|xt (27)

yleXl yMeXxmn s=1 T

The probabilityGi,(p’“) consitutes a major computational burden.

7 Exact dynamic state-dependent randomized policy

The time- and state-dependent routing poli¢y, ¢) for a classj call request is specified by
the randomization weights; (z, ¢):

hé‘-”(z,t) = Pr {pk <plVle Wi\ {k},p" < rj} (28)

wherep”® denote the random path shadow price for patfThe call request is rejected with
probabilityh)(z,t) = 1 — Syew, hf (2, t). The weights can be written:

iz, t)= > - > Pript<p WleW;\{k}}o(r HQ (v'|x*, t,a)

ylex!t yreXmk
(29)

where patht € WW; consist ofny, links andf(z) = 1if z > 0 andf(z) = 0if = < 0. Since
paths are independent by assumption we have

h;‘?(z,t): oo Yy 11 Pr{p <p} HQSy\x t,a)  (30)

ylex? yreX™k leW;\{k}

wherep”® denotes the deterministic shadow price for path state(y!, ..., y"™). Let

Fi(v) = Pr{p* < v} (31)
Define
Gh(v) =1—F}(v) (32)
By definition of G} (v) we have
Prip' > p"} = G, (") (33)
Which gives the result
i) = > - 3 I Gl H@8y|x ta)  (34)
ylext yreXmk 1eW;\{k}
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The probabilityG', (p*) can be obtained as:

G = X o X oy - W b @9

ylext ymexm

8 Approximate dynamic state-dependent randomized pol-
icy

For every state of paththe probabilityGi,(p’f) that pathk has lower path shadow price than
the competing path must be computed The exact computation requi?éS™) operations
wheresS denotes the maximum size of the state space of the links In/ pat

One solution attempt is to represent each link state on thgeting path by the equi-
librium distribution@®(x*):

A=Y - % e<pl<x1,...,xm>—ﬁ)f{lcﬂxs) (36)

xleXx! x"eX™

In this case the randomization weight for patlonly depend on the stateof this path,
and not on the states of the competing paths.

References

[1] Astrom K.J., “Optimal control of Markov decision progges with incomplete state in-
formation” Journal of Mathematical Analysis and Applicatiod:174-205, 1965.

[2] Dziong Z., Mignault J., Rosenberg C., “Blocking evaloatfor networks with reward
maximization routing”, InProceedings of INFOCOM’'9Q3p. 593-601, San Fransisco,
USA, 1993.

[3] Soderstrom T.Discrete-time Stochastic Systems—Estimation and Cor2inal edition,
Springer-Verlag, 2002.



