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This paper evaluates a Markov decision approach to single–link Call Admission Control for

CBR/VBR and ABR/UBR services. Two different schemes that support integration of narrow-

band ABR/UBR and wide-band CBR/VBR services are evaluated: the standard preemptive

scheme and the modified partial blocking scheme. The structure of the Markov decision policy

shows an ”intelligent blocking” feature, which implements bandwidth reservation for wide-band

calls. The numerical results show that the Markov decision method yields higher long-term

reward than the complete sharing method when the ability to create sufficient capacity for wide-

band  calls through partial blocking/preemption is limited. The results also show that the modi-

fied partial blocking scheme, which allows total preemption, gives the highest average reward

rate.

1.  INTRODUCTION

Call Admission Control (CAC) in Asynchronous Transfer Mode (ATM) networks should sup-

port an efficient integration of the Variable Bit Rate (VBR), Constant Bit Rate (CBR), Available

Bit Rate (ABR) and Unspecified Bit Rate (UBR) service classes. One of the main design issues

is how to share the capacity between guaranteed services (CBR and VBR) and best effort services

(ABR and UBR). The design must utilize that fact that best effort calls have the ability to reduce

their bandwidth in case of congestion. Two methods that meet this constraint are the standard

preemptive scheme and the standard partial blocking scheme.

In the standard preemptive scheme, best effort calls are preempted when guaranteed service

calls arrive to a busy link. In this paper, the best effort calls that are chosen for preemption are
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selected at random. When calls depart from the link such that sufficient free capacity becomes

available, a preempted best effort call enters service again. The preemptive scheme was analyzed

in [3] in the case when all calls enter a queue before service. It was found that the scheme is capa-

ble of improving the link utilization at the expense of fairness. The common FIFO policy was

shown to maintain fairness at some expense of link utilization.

In the standard partial blocking scheme [1, 2], the best effort services adapt their bandwidth

requirement to the available capacity such that the bandwidth - holding time product remains

constant. Each best effort call can specify a minimal accepted service ratio, rmin�(0,1] (along

with the bandwidth requirement, b) which is used in the call negotiation process. A best effort

call is accepted only if the available bandwidth ba fulfills the criteria: rminb�ba�b. Throughout

the lifetime of a call, the instantaneous service rate r(t), defined as ba(t)/b, may fluctuate accord-

ing to the current load and available capacity on the link. The standard partial blocking scheme

was analyzed in [1, 2] were it was found that the scheme gives low blocking probability and effi-

cient link utilization for best effort calls.

The standard preemptive and partial blocking scheme was evaluated in [9] using optimal call

admission control policies derived from Markov decision theory [10]. The two methods were

shown to yield high average reward rates for different mixes of narrow-band and wide-band traf-

fic. Several alternative methods to the Markov decision approach have been proposed in the liter-

ature, e.g. class limitation, trunk reservation and dynamic trunk reservation. The comparison

presented in [6] indicates that for many cases, the trunk reservation and dynamic trunk reserva-

tion policies can provide fair, bandwidth efficient solutions, having performance close to the

optimal Markov decision policy.

This paper evaluates the efficiency of Markov decision based call admission control policies

for the standard preemptive scheme and a modified version of the partial blocking scheme. The

modified partial blocking scheme is controlled by by two different minimal service ratios. The

first ratio, rmin,dim�(0,1], controls the access of best effort calls and limits the number of

accepted  best effort calls. The second ratio, rmin,user�[0,1], controls the access of guaranteed

service calls. Using two minimal service ratios it is possible to both limit the time spent in the

system for best effort calls and to allow a zero instantaneous service ratio. Note that the preemp-
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tion occurring with rmin,user=0 is fair since all best effort calls will have their bandwidth reduced

to zero upon preemption, which is not the case with the standard preemptive scheme.

Markov decision theory provides a computationally efficient technique to find the optimal

CAC policy in terms of long-term reward. The Markov decision policy maps states to admission

decisions (actions), i.e. to accept or reject a new call. The Markov decision approach evaluates

the long-term reward of each action in each state, and chooses the action which maximizes the

reward. The evaluation is based on a Markov model of the decision task, which comprises the

state transition probabilities and the expected reward delivered at each state transition. The deci-

sion task model is parameterized by the call arrival and departure rates, which are assumed to be

measured on line.

The Markov decision technique has been applied to the link access control problem [7] and

the network routing problem [4] assuming that blocked calls are lost. The technique has also been

applied to link allocation [8] and routing problems [5] in the context of blockable narrow-band

and queueable wide-band call traffic.

This paper is organized as follows. In the next section, the CAC problem is introduced. Section

3 presents a Markov decision model for the CAC task for the standard preemptive scheme and

for the modified partial blocking scheme. Section 4 describes the policy iteration technique of

Markov decision theory in which the value determination problem is handled by solving a sparse

linear equation system. Section 5 presents the numerical results. Finally, section 6 concludes the

paper.

2.  THE CAC PROBLEM

In the CAC problem, a link with capacity C [units/s] is offered calls from K traffic classes of

CBR1 and ABR calls. Calls belonging to class j�J={1, 2, ... K} have the same bandwidth

requirements and similar arrival and holding time dynamics. For ease of presentation, we con-

sider K=2 traffic classes throughout the rest of this paper. The two classes consists of a narrow-

band ABR class and a wide-band CBR class, indexed by 1 and 2, respectively.

We assume that class-j calls with peak bandwidth requirement bj arrive according to a Poisson

process with average rate �j  [s-1], and that the CBR call holding time is exponentially distributed

                                                                   
1. VBR calls can be modelled the same way adopting the notion of effective bandwidth.
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with average 1/�2 [s]. The ABR call holding time for the preemptive scheme and the partial

blocking schemes is exponentially distributed with average 1/�1 in the case when the call experi-

ences no preemption and no partial blocking, respectively. If the ABR calls are partially blocked,

the call holding time can be calculated by techniques from Markov driven workload processes,

see [2].

The task is to find a CAC policy � that maps request states (j,x)�J×X to admission actions

a�A,  �:  J×X�  A, such that the long-term reward is maximized. The set A contains the possible

admission actions, {ACCEPT, REJECT}. The set X contains all feasible system states. For the

preemptive scheme it is given by:

X1 � �
�

�
(n1, n2, p) : p � 0, nj � 0, 	

j�J

njbj � C

�

�



(1)
�
�

�
(n1, n2, p) : p � {1, 2, ..., pmax}, nj � 0, 	

j�J

njbj � C

�

�
,

where nj is is the number of class-j calls accepted on the link, and p is the number of preempted

ABR calls, which can take on the values p�P={0,1, ..., pmax}. For later use, we also introduce

the set of feasible link states for the preemptive scheme:

N � �
�

�
(n1, n2) : nj � 0, 	

j�J

njbj � C

�

�
. (2)

For the partial blocking scheme, the set of feasible system states to enter when admitting best

effort calls is given by:

X2,dim � �(n1, n2) : nj � 0, n1b1rmin,dim � n2b2 � C� (3)

The set of feasible system states to enter when admitting guaranteed service calls is given by:

X2,user �
�(n1, n2) : 0 � n1 � �C�(b1rmin,dim)�, 0 � n2 � �C�b2�,

(4)n1b1rmin,user � n2b2 � C�
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where rmin,dim�(0,1] is a minimal accepted service ratio used for dimensioning purposes, i.e.

to control the number of ABR calls in the system, and rmin,user �[0,1] is the minimal service ratio

acceptable for the user when admitting guaranteed service calls. Note that rmin,dim�rmin,user..

3.  A MARKOV DECISION MODEL FOR CAC

This section presents a Markov decision model for CAC for the standard preemptive scheme

and the modified partial blocking scheme. The Markov decision model specifies a Markov chain

which is controlled by actions in each state. The actions result in state transitions and reward

delivery to the system. The control objective is to find the actions that maximize the average

reward accumulated over time. In the current application, the Markov chain evolves in continu-

ous time, and we therefore face a semi-Markov decision problem (SMDP).

The SMDP state x corresponds to the system state in the previous section, i.e. x=(n1,n2,,p) for

the preemptive scheme, and x=(n1,n2) for the partial blocking scheme. The SMDP action a is rep-

resented by a vector a=(a1,a2), corresponding to admission decisions for presumptive call

requests. The action space for both the preemptive and the partial blocking scheme becomes:

A = {(a1,a2) : aj�{0,1}, j�J}. (5)

were aj=0 denotes call rejection and aj=1 denotes call acceptance. The permissible action space

in state x is a state-dependent subset of A. For the preemptive scheme, the permissible action

space becomes:

A1(x) � �(a1, a2) � A : a1 � 0 if n � �1 � N,

a2 � 0 if n � �2 � �(n1, n2)�1 � N or p � �(n1, n2) � P� (6)

where n=(n1,n2), �j  denotes a vector with zeros except for a one at position j, and

�(n1, n2) � ��
�

�

1
b1
�
�

�

	
j�J

njbj � C � b2�
�

�
�
�

�
(7)
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where �(s)=0 if s�0 and �(s)=�s�if s>0. The quantity �(n1,n2) denotes the number of ABR calls

that should be preempted in link state (n1,n2) in order to reserve capacity for a new CBR call. For

the partial blocking scheme, the permissible action space becomes: 

A2(x) = {(a1,a2)�A: a1 = 0 if n+�1�X2,dim, a2 = 0 if n+�2�X2,,user} (8)

The Markov chain is characterized by state transition probabilities pxy(a) which expresses the

probability that the next state is y, given that action a is taken in state x. For the preemptive

scheme, the state transition probabilities for j�J become:

ny � nx � �2 � �(n1, n2)�1 � N, nx � �2 � N,

pxy(a) �

��
�
�
�
�

��
�
�
�
�

�

�

�

�jaj�(x, a),
ny � nx � �j � N
py � px � 0,

,

�2a2�(x, a),
py � px � �(n1, n2) �

nxj �j �(x, a), ny � nx � �j � min(bj�b1, px)�1 � N,

py � max(px � bj�b1, 0) � P,

nxj�j �(x, a), ny � nx � �j � N,

P,

otherwise

py � px � 0,
0

(9)

where the quantity �(x,a) denotes the average sojourn time in state x:

�(x, a) ��
�

�

	
j�J

nxj�j � aj�j�
�

�

�1

(10)

The first term in the state transition probability expression above gives the state transition

probability for a CBR or ABR call arrival to a link with some free capacity without any preemp-
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tion of ABR calls. The second term gives the state transition probability for a CBR call arrival

to a link with sufficient free capacity after preemption of ABR calls. The third term gives the state

transition probability for CBR or ABR call departures when the preemption queue is non-empty.

The fourth term gives the state transition probability for CBR or ABR call departures when the

preemption queue is empty.

For the partial blocking scheme, the state transition probabilities become:

pxy(a) �
�

�
�

�

�
nx2�2�(x, a), ny � nx � �2 � X2,user,

nx1�1r(x)�(x,a) , ny�nx��1�X2,user,

�1a1�(x,a), ny�nx��1�X2,dim,
�2a2�(x,a), ny�nx��2 �X2,user,

0, otherwise

(11)

where r(x) denotes the instantaneous service ratio in state x:

1, 	
j�J

njbj � C,
r(x)��

[C�nx2b2]�(nx1b1), 	
j�J

njbj�C,
(12)

The average sojourn time in state x is given by:

�(x, a) ��
�

�
nx1�1r(x) � nx2�2 �	

j�J

aj�j�
�

�

�1

(13)

The expected accumulated reward in state x is given by R(x,a)=q(x)�(x,a). For the preemptive

scheme the reward accumulation rate is given by q(x)	
j�J rjnxj�j. For the partial blocking

scheme the reward accumulation rate is given by q(x)	r1nx1�1r(x)+r2nx2�2 . The quantity rj,

which specifies the reward for carrying a type-j call, can be written rj=rj’bj/�j, where rj’ denotes

the normalized reward parameter. In this paper, we let the normalized reward parameter depend

on the pricing model used for call charging.
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4.  MARKOV DECISION COMPUTATIONS

This section describes a method for solving the CAC task, formulated as a SMDP. The method

of choice is policy iteration, which is one of the computational techniques within Markov deci-

sion theory to determine an optimal policy.

The admission to the link is controlled by the so-called gain function, gj(x,�). This function

simply measures the increase in long-term reward due to acceptance of a class j call in state x

under policy �. Calls are accepted if the gain function is positive and rejected otherwise. The gain

function can be expressed in terms of the relative value function, v(x,���  as

gj(x,�)=v(x+�j,�)–v(x,�). The difference v(x,�)–v(y,�) can be interpreted as the expected differ-

ence in accumulated reward over an infinite interval starting in state x instead of in state y under

policy �� The relative value function is computed by the policy iteration algorithm.

The policy iteration algorithm computes a series of improved policies in an iterative manner.

The computation of an improved policy  �k+1 from the current policy �k involves three steps:

� task identification

� value determination

� policy improvement

The first step involves determining the Markov decision model, i.e. the state transition proba-

bilities and the expected rewards. These quantities are parameterized by link call arrival rates �j

and call departure rates �j, see section 3. The arrival/departure rates are obtained from measure-

ments to make the Markov decision model adaptive to actual traffic characteristics. The measure-

ment period corresponds to the policy improvement period. The measurement period should be

of sufficient duration for the system to attain statistical equilibrium.

The second step involves computing the relative value function for the current policy. The

value determination step consists of solving the set of linear equations:

v(x,�) � R(x, a) � g(�)�(x, a) � 	
y�X

pxy(a)v(y,�) ; x � X

v(xr,�) � 0
(14)

where xr is an arbitrary chosen reference state (e.g. the empty state) and g(�) denotes the aver-

age reward rate. The solution involving all the v(x,�� and  g(�) can be obtained by any standard

routine for sparse linear systems.
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The third step is the actual policy improvement. This step consists of finding the action that

maximizes the relative value in each state:

max
a�A(x)

�
�

�
R(x, a) � g(�)�(x, a) � 	

y�X

pxy(a)v(y,�)

�

�
; x � X (15)

Policy iteration can be proved to converge to an optimal policy in a finite number of iterations

in the case of finite state and action space [10].

The proposed method can be summarized as follows. Choose an initial admission policy �

and a relative value function v(x,��� During a finite period, allocate calls according to the gain

function associated with the chosen relative value function. At the same time, measure traffic sta-

tistics (call arrival rates and call departure rates) in order to determine the Markov decision task

for the current policy. Evaluate the applied policy in the context of the current Markov decision

task, by solving a sparse linear equation system, and improve the policy. Apply the new policy

during the next period, measure the traffic statistics and repeat the policy evaluation and the

policy improvement step and so forth.

5.  NUMERICAL RESULTS

This section evaluates the performance of two CAC methods for the preemptive scheme and

the partial blocking scheme: the Markov decision (MD) method and the complete sharing (CS)

method.  Performance measures of interest are the average reward rate and the average time an

ABR call spends in the system (the call holding time). For the preemptive scheme, the preemp-

tion probability is also evaluated.

The results are based on simulations for a single link with capacity C=48 [units/s], which is

offered different mixes of ABR (class 1) and CBR (class 2) traffic. The bandwidth requirements

are b1=1, b2=6 [units/s], and the mean call holding times 1/�1=1/�2=1 [s], assuming that the ABR

calls experiences no preemption and no partial blocking.

The arrival rates �1 and �2 were varied so that the average offered traffic equalled the link

capacity:

 
b1�1
C�1

�
b2�2
C�2

� 1.0 (16)
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A step size of 0.2 in the arrival rate ratio �1/�2 has been used when plotting all the figures. More-

over, the curves presented in the figures are obtained after averaging over 30 simulation runs and

95% confidence intervals, computed assuming normally distributed values, are also shown for

each curve.

Figure 1 and 2 shows the average reward rate for the preemptive scheme for different arrival

rate ratios, different maximal sizes of the preemption queue, and different normalized reward

parameters for the ABR class.
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Figure 1: Average reward rate for different
arrival rate ratios for the preemptive scheme with
r1’=0.05. Case 1 has pmax=24 and case 2 has
pmax=6.

Figure 2: Average reward rate for different
arrival rate ratios for the preemptive scheme with
r1’=0.20. Case 1 has pmax=24 and case 2 has
pmax=6.

When the maximal size of the preemption queue is large (pmax=24), the average reward rate

of the MD and CS method are similar. When the maximal queue size is small (pmax=6), the MD

method gives a larger average reward rate compared to the CS method. The reason is that for

small maximal queue sizes the MD method implements so called “intelligent blocking“ in indi-

vidual states. By rejecting narrow-band call requests, typically when the free capacity equals the

size of a wide-band call, bandwidth is reserved for the wide-band class, which increases the long-

term reward.

Figure 3 and 4 shows the average time an ABR call spends in the system in the preemptive

scheme with the MD method for different maximal sizes of the preemption queue. Three different

curves are shown in each figure. The lower curve shows the average system time for calls that

are not preempted. The middle curve shows the average system time taking all calls (preempted
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and not preempted) into account. The upper curve shows the average system time for calls that

are preempted. The lower curve is below 1 since short calls are more likely not to be preempted.
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Figure 3: Average system time for ABR calls
for different arrival rate ratios for the
preemptive/MD scheme with pmax=24 and

Figure 4: Average system time for ABR calls
for different arrival rate ratios for the
preemptive/MD scheme with pmax=6 and
r ’=0.05.
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Figure 5: Preemption probability for ABR calls
for different arrival rate ratios for the preemp-
tive/MD scheme with pmax=24 and r1’=0.05.

Figure 6: Preemption probability for ABR calls
for different arrival rate ratios for the preemp-
tive/MD scheme with pmax=6 and r1’=0.05.

Figure 5 and 6 show the preemption probability for the preemptive scheme with the MD

method for different arrival rate ratios and different maximal queue sizes. Two different curves

are shown in each figure. The upper curve shows the probability of preemption occurring 1 or

more times during the lifetime of an ABR call. The lower curve shows the probability of preemp-

tion occurring 2 or more times.
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Figure 7 and 8 shows the average reward rate for the partial blocking scheme for different

arrival rate ratios, different values of rmin,dim and rmin,user, and different values of the normalized

reward parameter for the ABR class. When rmin,user =0, i.e. when total preemption is allowed,

there is no performance difference between the MD and CS method. When rmin,user =0.5, the

intelligent blocking feature of the MD method results in a higher average reward rate. The nar-

row-band ABR class is blocked in all link states when the normalized reward parameter for the

ABR class is low (r1’=0.05). When the value is higher (r1’=0.20) the MD policy blocks ABR

calls in all link states when �1/�2 <2, and in individual link states when �1/�2 >2.

When the narrow-band ABR class is completely blocked, we face a severe fairness problem.

However, the complete blocking can be avoided by increasing the normalized reward parameter

r1’ for the ABR class. Of course, we can not expect the average reward rate to be as high as when

the narrow-band ABR class is completely blocked since the blocking probability for the wide-

band CBR class will increase. Nevertheless, changing the normalized reward parameters is a

simple way to control the distribution of blocking probabilities among different call classes [4].
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Figure 7: Average reward rate for different
arrival rate ratios for the partial blocking
scheme with price factor r1’=0.05.
Case 1 has rmin,dim=0.5 and rmin,user=0.
Case 2 has rmin,dim=0.5 and rmin,user=0.5.

Figure 8: Average reward rate for different
arrival rate ratios for the partial blocking
scheme with price factor r1’=0.20.
Case 1 has rmin,dim=0.5 and rmin,user=0.
Case 2 has rmin,dim=0.5 and rmin,user=0.5.

Figure 9 and 10 shows the average system time for ABR calls in the partial blocking scheme

with the MD method for different arrival rate ratios and different values of rmin,dim and rmin,user.

No curve is shown for the case when ABR calls are blocked in each link state. In figure 9, the

case 1 curve for the Markov decision method has larger confidence intervals than the case 1 curve
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for the complete sharing method.
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Figure 9: Average system time for ABR calls
for different arrival rate ratios for the partial
blocking scheme with r1’=0.05.
Case 1 has rmin,dim=0.5 and rmin,user=0.
Case 2 has rmin,dim=0.5 and rmin,user=0.5.

Figure 10: Average system time for ABR calls
for different arrival rate ratios for the partial
blocking scheme with r1’=0.20.
Case 1 has rmin,dim=0.5 and rmin,user=0.
Case 2 has rmin,dim=0.5 and rmin,user=0.5.
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For comparison, figure 11 and 12 shows the average reward rate for different realizations of

the preemptive and the partial blocking scheme with CAC based on the MD method. The method

with highest average reward rate is obviously partial blocking with rmin,user=0, i.e. when total

preemption is allowed. Confidence intervals are not shown in order to improve the readability

of the figures.
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Figure 11: Average reward rate comparison
between the preemptive/MD and partial
blocking/MD scheme for different arrival
rate ratios with r1’=0.05.
PB case 1 has rmin,dim=0.5 and rmin,user=0. 
PB case 2 has rmin,dim=0.5 and rmin,user=0.5.
PRE case 1 has pmax=24.
PRE case 2 has pmax=6.

Figure 12: Average reward rate comparison
between the preemptive/MD and partial
blocking/MD scheme for different arrival
rate ratios with r1’=0.20.
PB case 1 has rmin,dim=0.5 and rmin,user=0. 
PB case 2 has rmin,dim=0.5 and rmin,user=0.5.
PRE case 1 has pmax=24.
PRE case 2 has pmax=6.

The results presented in the figures were obtained after 10 adaptation epoches with the policy

iteration method. Each adaptation period contained 100 000 simulated call events.  The perfor-

mance values in the figures are based on measurements of 400 000 call events after policy conver-

gence.

6.  CONCLUSION

This paper has evaluated the efficiency of Call Admission Control (CAC) based on Markov

decision theory for two schemes that supports integration of guaranteed services and best effort

services: the standard preemptive scheme and the modified partial blocking scheme. The Markov

decision technique can be used to compute CAC policies that are optimal in terms of long-term

reward. The optimality is achieved by intelligent blocking of narrow-band ABR/UBR calls,

either completely, or at link states where typically the free capacity equals the size of a wide-band

call.

The presented numerical results show that the Markov decision method yields higher long-

term reward than the complete sharing method when the ability to create sufficient capacity for

wide-band CBR calls through partial blocking/preemption is limited. The results also show that
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the modified partial blocking scheme, which allows total preemption (rmin,user=0), gives the

highest average reward rate.
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