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This paper evaluates a Markov decision approach to single-ink Call Admission Control for
CBR/VBR and ABR/UBR services. Two different schemes that support integration of narrow-
band ABR/UBR and wide-band CBR/VBR services are evaluated: the standard preemptive
scheme and the modified partial blocking scheme. The structure of the Markov decision policy
shows an "intelligent blocking” feature, which implements bandwidth reservation for wide-band
calls. The numerical results show that the Markov decision method yields higher long-term
reward than the compl ete sharing method when the ability to create sufficient capacity for wide-
band calls through partial blocking/preemption islimited. The results also show that the modi-
fied partial blocking scheme, which allows total preemption, gives the highest average reward
rate.

1. INTRODUCTION

Call Admission Control (CAC) in Asynchronous Transfer Mode (ATM) networks should sup-
port an efficient integration of the Variable Bit Rate (VBR), Constant Bit Rate (CBR), Available
Bit Rate (ABR) and Unspecified Bit Rate (UBR) service classes. One of the main design issues
is how to share the capacity between guaranteed services (CBR and VBR) and best effort services
(ABR and UBR). The design must utilize that fact that best effort calls have the ability to reduce
their bandwidth in case of congestion. Two methods that meet this constraint are the standard
preemptive scheme and the standard partial blocking scheme.

In the standard preemptive scheme, best effort calls are preempted when guaranteed service

calls arrive to abusy link. In this paper, the best effort calls that are chosen for preemption are



selected at random. When calls depart from the link such that sufficient free capacity becomes
available, apreempted best effort call enters service again. The preemptive scheme was anayzed
in [3] in the case when all calls enter a queue before service. It was found that the scheme is capa-
ble of improving the link utilization at the expense of fairness. The common FIFO policy was

shown to maintain fairness at some expense of link utilization.

In the standard partial blocking scheme[1, 2], the best effort services adapt their bandwidth
requirement to the available capacity such that the bandwidth - holding time product remains
constant. Each best effort call can specify aminimal accepted serviceratio, rpn € (0,1] (along
with the bandwidth requirement, b) which is used in the call negotiation process. A best effort
call isaccepted only if the available bandwidth by fulfills the criteria: ryinb < by < b. Throughout
the lifetime of acall, the instantaneous service rate r(t), defined as by (t)/b, may fluctuate accord-
ing to the current load and available capacity on the link. The standard partial blocking scheme
was analyzed in [1, 2] were it was found that the scheme gives low blocking probability and effi-
cient link utilization for best effort calls.

The standard preemptive and partia blocking scheme was evaluated in [9] using optimal call
admission control policies derived from Markov decision theory [10]. The two methods were
shown to yield high average reward rates for different mixes of narrow-band and wide-band traf-
fic. Severd aternative methods to the Markov decision approach have been proposed in the liter-
ature, e.g. class limitation, trunk reservation and dynamic trunk reservation. The comparison
presented in [6] indicates that for many cases, the trunk reservation and dynamic trunk reserva
tion policies can provide fair, bandwidth efficient solutions, having performance close to the

optimal Markov decision policy.

This paper evaluates the efficiency of Markov decision based call admission control policies
for the standard preemptive scheme and a modified version of the partial blocking scheme. The
modified partial blocking schemeis controlled by by two different minimal serviceratios. The
first ratio, rmingim€ (0,1], controls the access of best effort calls and limits the number of
accepted best effort calls. The second rétio, rmin user €[0,1], controls the access of guaranteed
service calls. Using two minimal service ratios it is possible to both limit the time spent in the

system for best effort calls and to alow a zero instantaneous service ratio. Note that the preemp-



tion occurring with ryin user =0 isfair since all best effort calls will have their bandwidth reduced
to zero upon preemption, which is not the case with the standard preemptive scheme.

Markov decision theory provides a computationally efficient technique to find the optimal
CAC policy interms of long-term reward. The Markov decision policy maps states to admission
decisions (actions), i.e. to accept or reject anew call. The Markov decision approach evaluates
the long-term reward of each action in each state, and chooses the action which maximizes the
reward. The evaluation is based on a Markov model of the decision task, which comprises the
state transition probabilities and the expected reward delivered at each state transition. The deci-
sion task model is parameterized by the call arrival and departure rates, which are assumed to be
measured on line.

The Markov decision technique has been applied to the link access control problem [7] and
the network routing problem [4] assuming that blocked calls are lost. The technique has aso been
applied to link allocation [8] and routing problems [5] in the context of blockable narrow-band
and queueable wide-band call traffic.

This paper isorganized as follows. In the next section, the CAC problem isintroduced. Section
3 presents aMarkov decision model for the CAC task for the standard preemptive scheme and
for the modified partial blocking scheme. Section 4 describes the policy iteration technique of
Markov decision theory in which the value determination problem is handled by solving a sparse
linear equation system. Section 5 presents the numerical results. Finaly, section 6 concludes the

paper.

2. THE CAC PROBLEM

In the CAC problem, alink with capacity C [units/s] is offered calls from K traffic classes of
CBR! and ABR calls. Calls belonging to class j€J={1, 2, ... K} have the same bandwidth
requirements and similar arrival and holding time dynamics. For ease of presentation, we con-
sider K=2 traffic classes throughout the rest of this paper. The two classes consists of a narrow-
band ABR class and awide-band CBR class, indexed by 1 and 2, respectively.

We assume that classj calls with peak bandwidth requirement by arrive according to a Poisson
process with average rate [s]], and that the CBR call holding time is exponentially distributed

1. VBR calls can be modelled the same way adopting the notion of effective bandwidth.



with average Lu» [s]. The ABR call holding time for the preemptive scheme and the partial
blocking schemesis exponentially distributed with average 1/u1 in the case when the call experi-
ences no preemption and no partial blocking, respectively. If the ABR cals are partially blocked,
the call holding time can be calculated by techniques from Markov driven workload processes,
see(2].

Thetask isto find a CAC policy 7 that maps request states (j,x) € JxX to admission actions
acA, m: IxX— A, such that the long-term reward is maximized. The set A contains the possible
admission actions, { ACCEPT, REJECT}. The set X contains all feasible system states. For the
preemptive schemeit is given by:

Xl—{(nl,nz,p):p=0,n Oan <C}

jEJ

(1)
(nuno,p): p E€{L2 ..., Pmaxt n =0, anbj = Cyg,

jed

where ny isisthe number of classj cals accepted on the link, and p is the number of preempted
ABR calls, which can take on the values p& P={ 0,1, ..., pmax} - FOr later use, we aso introduce
the set of feasible link states for the preemptive scheme:

N = {(nl, n):m =0 > nb < c} )

jed

For the partial blocking scheme, the set of feasible system states to enter when admitting best
effort callsis given by:

Xodim = ((“1’ Np) i My = 0, Ny i im + Noby =< C) (3)
The set of feasible system states to enter when admitting guaranteed service calsis given by:

Xouser = [(nl' ny:0=ny < |_C/(blrmin,dim)J ,0 = n, = [C/by],

N101F inuser + NPy < C] 4



where rmin gim € (0,1] isaminimal accepted service ratio used for dimensioning purposes, i.e.
to control the number of ABR callsin the system, and fyin user €[0,1] isthe minimal serviceratio
acceptable for the user when admitting guaranteed service calls. Note that rmn dim = 'min,user-.

3. AMARKOV DECISION MODEL FOR CAC

This section presents a Markov decision model for CAC for the standard preemptive scheme
and the modified partial blocking scheme. The Markov decision model specifiesaMarkov chain
which is controlled by actions in each state. The actions result in state transitions and reward
delivery to the system. The control objective is to find the actions that maximize the average
reward accumulated over time. In the current application, the Markov chain evolves in continu-

ous time, and we therefore face a semi-Markov decision problem (SMDP).

The SMDP state x corresponds to the system state in the previous section, i.e. x=(n1,ny,,p) for
the preemptive scheme, and x=(n1,ny) for the partial blocking scheme. The SMDP actiona isrep-
resented by a vector a=(aj,ap), corresponding to admission decisions for presumptive call

requests. The action space for both the preemptive and the partial blocking scheme becomes:
A={(apa) :5€{01},j€J}. )

were g =0 denotes cal rejection and g =1 denotes call acceptance. The permissible action space
in state x is a state-dependent subset of A. For the preemptive scheme, the permissible action

space becomes:

A = {(@a,ay) € A a; = 0ifn+ 96, € N,
a, = 0ifn + 6, — A(n;, )8, & Norp + A(ny,n,) & P (6)

where n=(ny,ny), §j denotes a vector with zeros except for a one at position j, and

ANy ny) = 6 [bil lz nb, — C + bzﬂ @)
jeJ



wheref(s)=0if s<0and 6(s)=| s if s>0. The quantity 4 (n1,ny) denotes the number of ABR calls
that should be preempted in link state (n1,n2) in order to reserve capacity for anew CBR call. For
the partial blocking scheme, the permissible action space becomes:

A2(X) = {(a]_,az) €A a;=0if n+51$X2dim, a>=0if n+62¢X2"user} (8)

The Markov chain is characterized by state transition probabilities p,y(a) which expresses the
probability that the next state isy, given that action a is taken in state x. For the preemptive

scheme, the state transition probabilities for j € J become:

r Ny = Nx + (,3] €N

Agyr(x. ), Py =px =0,

Apa5t(X, 8), Ny = Nk + 9, = 4(N, N8, € N, ny + 6, & N,
Py = px + 4(ny,ny) € P,

Pxy(d) = 3 11, 7(%, @), ny = Ny — &; + min(b;/by, px)d; € N,

py = max(px — bj/by,0) € P, (9)
nxjfujt(x1 a), y = M= 5j N,
py = pX = 0,
ko otherwise

where the quantity 7(x,a) denotes the average sojourn time in state x:

-1
7(X,a) = lz Nu;j + aj/lj] (20

jeJd

The first term in the state transition probability expression above gives the state transition
probability for aCBR or ABR cdl arrival to alink with some free capacity without any preemp-



tion of ABR calls. The second term gives the state transition probability for a CBR call arrival
to alink with sufficient free capacity after preemption of ABR calls. The third term gives the state
transition probability for CBR or ABR call departures when the preemption queue is non-empty.
The fourth term gives the state transition probability for CBR or ABR call departures when the
preemption queue is empty.

For the partial blocking scheme, the state transition probabilities become:

lzaz‘[(x,a), ny: nx+62 EXZ,USET’
nlext 2T(X, a), ny = nX - 62 & XZ’user,
L O, otherwise
where r(X) denotes the instantaneous service ratio in state x:
1, > np<C,
r(x) = = (12)
C—ny,b
[ w2P2l/ (Nggby), Z njbj >C,
JEJ
The average sojourn time in state x is given by:
-1
T(X,@) = [N r(X) + Nou, + z a (13)
jed

The expected accumulated reward in state x is given by R(x,a)=q(X)z(x,a). For the preemptive
scheme the reward accumulation rate is given by q(x)=2j 3 rjngu;. For the partial blocking
scheme the reward accumulation rate is given by q(x)=r1nxiu1r(X)+rarkou . The quantity rj,
which specifies the reward for carrying atype-j call, can be written rj=rj’ b /u;, wherer;’ denotes
the normalized reward parameter. In this paper, we let the normalized reward parameter depend
on the pricing model used for call charging.



4. MARKOV DECISION COMPUTATIONS
This section describes a method for solving the CAC task, formulated as a SMDP. The method

of choiceispolicy iteration, which is one of the computational techniques within Markov deci-

sion theory to determine an optimal policy.

The admission to the link is controlled by the so-called gain function, g (x,r). This function
simply measures the increase in long-term reward due to acceptance of aclass| call in state x
under policy . Cdlls are accepted if the gain function is positive and rejected otherwise. The gain
function can be expressed in terms of the relative value function, v(xr), as
g (X,r)=Vv(x+9;j 7T)-Vv(X,7). The difference v(x,)-v(y,m) can be interpreted as the expected differ-
ence in accumulated reward over an infiniteinterval starting in state x instead of in state y under
policy 7. The relative value function is computed by the policy iteration agorithm.

The policy iteration algorithm computes a series of improved policiesin an iterative manner.
The computation of an improved policy sy 1 from the current policy sk involves three steps:
* task identification
 value determination
e policy improvement
Thefirst step involves determining the Markov decision model, i.e. the state transition proba-
bilities and the expected rewards. These quantities are parameterized by link call arrival rates j;
and call departure ratesy;, see section 3. The arrival/departure rates are obtained from measure-
ments to make the Markov decision model adaptive to actual traffic characteristics. The measure-
ment period corresponds to the policy improvement period. The measurement period should be
of sufficient duration for the system to attain statistical equilibrium.

The second step involves computing the relative value function for the current policy. The
value determination step consists of solving the set of linear equations:
V(1) = R(x.a) — g@m)r(xa) + > py@vy.m) ;X € X

yex 14
V(X ) = 0

wherex isan arbitrary chosen reference state (e.g. the empty state) and g(ir) denotes the aver-
age reward rate. The solution involving all the v(x,z) and g(;r) can be obtained by any standard
routine for sparse linear systems.



Thethird step isthe actual policy improvement. This step consists of finding the action that
maximizes the relative value in each state:

max {R(x, a) — g(m)r(x, a) + Z Pry(@V(Y, n)} X € X (15)
acA(x)

yeX
Policy iteration can be proved to converge to an optimal policy in afinite number of iterations
in the case of finite state and action space [10].

The proposed method can be summarized as follows. Choose an initial admission policy &
and arelative value function v(x,). During afinite period, allocate calls according to the gain
function associated with the chosen relative value function. At the same time, measure traffic sta-
tistics (call arrival rates and call departure rates) in order to determine the Markov decision task
for the current policy. Evaluate the applied policy in the context of the current Markov decision
task, by solving a sparse linear equation system, and improve the policy. Apply the new policy
during the next period, measure the traffic statistics and repeat the policy evaluation and the

policy improvement step and so forth.

5. NUMERICAL RESULTS

This section evaluates the performance of two CAC methods for the preemptive scheme and
the partial blocking scheme: the Markov decision (MD) method and the compl ete sharing (CS)
method. Performance measures of interest are the average reward rate and the average time an
ABR call spendsin the system (the call holding time). For the preemptive scheme, the preemp-
tion probability is also evaluated.

The results are based on simulations for a single link with capacity C=48 [unitg/s], whichis
offered different mixes of ABR (class 1) and CBR (class 2) traffic. The bandwidth requirements
areb;=1, by=6 [units/s], and the mean call holding times Lu1=1/u»=1[9], assuming that the ABR

calls experiences no preemption and no partial blocking.
The arrival rates 11 and 4> were varied so that the average offered traffic equalled the link

capacity:

b/, b



A step size of 0.2 inthe arrival rate ratio 41/, has been used when plotting all the figures. More-
over, the curves presented in the figures are obtained after averaging over 30 simulation runs and
95% confidence intervals, computed assuming normally distributed values, are also shown for
each curve.

Figure 1 and 2 shows the average reward rate for the preemptive scheme for different arrival
rate ratios, different maximal sizes of the preemption queue, and different normalized reward
parameters for the ABR class.
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Figure 1: Average reward rate for different Figure 2: Average reward rate for different
arrival rate ratios for the preemptive schemewith  arrival rate ratios for the preemptive scheme with
r1'=0.05. Case 1 has prax=24 and case 2 has r1'=0.20. Case 1 has prax=24 and case 2 has
pmaX:6- prnax:6

When the maximal size of the preemption queueislarge (pmax=24), the average reward rate
of the MD and CS method are similar. When the maximal queue sizeis small (pnax=6), the MD
method gives alarger average reward rate compared to the CS method. The reason is that for
small maximal queue sizes the MD method implements so called “intelligent blocking® in indi-
vidual states. By rejecting narrow-band call requests, typically when the free capacity equalsthe
size of awide-band call, bandwidth is reserved for the wide-band class, which increases the long-

term reward.

Figure 3 and 4 shows the average time an ABR call spendsin the system in the preemptive
scheme with the MD method for different maximal sizes of the preemption queue. Three different
curves are shown in each figure. The lower curve shows the average system time for calls that
are not preempted. The middle curve shows the average system timetaking all calls (preempted
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and not preempted) into account. The upper curve shows the average system time for calls that

are preempted. The lower curveisbelow 1 since short calls are more likely not to be preempted.
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Figure 3: Average system time for ABR calls
for different arrival rate ratios for the
preemptive/MD scheme with prgx=24 and
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Figure 5: Preemption probability for ABR calls
for different arrival rate ratios for the preemp-
tive/MD scheme with pyax=24 and r1'=0.05.
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Figure 4: Average system time for ABR calls
for different arrival rate ratios for the

preemptive/MD scheme with prax=6 and
r '=0.05.
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Figure 6: Preemption probability for ABR calls

for different arrival rate ratios for the preemp-
tive/MD scheme with pyax=6 and r1’=0.05.

Figure 5 and 6 show the preemption probability for the preemptive scheme with the MD

method for different arrival rate ratios and different maximal queue sizes. Two different curves

are shown in each figure. The upper curve shows the probability of preemption occurring 1 or

more times during the lifetime of an ABR call. The lower curve shows the probability of preemp-

tion occurring 2 or more times.



Figure 7 and 8 shows the average reward rate for the partial blocking scheme for different
arrival rate ratios, different values of ryin.dim ad rmin user, and different values of the normalized
reward parameter for the ABR class. When ryjn user =0, i.€. When total preemption is allowed,
there is no performance difference between the MD and CS method. When ryjn user =0.5, the
intelligent blocking feature of the MD method results in a higher average reward rate. The nar-
row-band ABR classis blocked in al link states when the normalized reward parameter for the
ABR classislow (r1’=0.05). When the value is higher (r1'=0.20) the MD policy blocks ABR
calsin al link stateswhen A1/A> <2, and in individual link states whenA1/4,>2.

When the narrow-band ABR class is completely blocked, we face a severe fairness problem.
However, the complete blocking can be avoided by increasing the normalized reward parameter
r{’ for the ABR class. Of course, we can not expect the average reward rate to be as high aswhen
the narrow-band ABR class is completely blocked since the blocking probability for the wide-
band CBR class will increase. Nevertheless, changing the normalized reward parametersis a
simple way to control the distribution of blocking probabilities among different call classes[4].

Average reward rate Average reward rate
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Figure 7: Average reward rate for different Figure 8: Average reward rate for different
arrival rate ratios for the partial blocking arrival rate ratios for the partial blocking
scheme with price factor r1’'=0.05. scheme with price factor r1'=0.20.
Ca% 1 haS rm|n’d|m:05 aﬂd rm n,user :0. Ca% 1 haS rm n’dim:0.5 and rmin’user :O.
Ca% 2 haS rm|n’d|m:05 and rm n,user :05 Ca% 2 haS rm n’d|m:05 and rmin’uw =05

Figure 9 and 10 shows the average system time for ABR callsin the partial blocking scheme
with the MD method for different arrival rate ratios and different values of rmin.dim ad rmin.user-
No curveis shown for the case when ABR calls are blocked in each link state. In figure 9, the

case 1 curve for the Markov decision method has larger confidence intervals than the case 1 curve
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for the compl ete sharing method.
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Figure 9: Average system time for ABR calls Figure 10: Average system time for ABR calls
for different arrival rate ratios for the partial for different arrival rate ratios for the partial
blocking scheme with r1’=0.05. blocking scheme with r1’=0.20.
Case 1l has I'mi n’dim:0.5 and rmin,user =0. Case 1l has rm|n‘d|m:05 and I'mi n,user =0.
Case 2 has I'nin,dim=0.5 and rmjn user =0.5. Case 2 has 'nyjn dim=0.5 and rpjn,user =0.5.

For comparison, figure 11 and 12 shows the average reward rate for different realizations of
the preemptive and the partial blocking scheme with CAC based on the MD method. The method
with highest average reward rate is obviously partial blocking with rmjn user =0, i.€. when total
preemption is allowed. Confidence intervals are not shown in order to improve the readability

of the figures.
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Figure 11: Average reward rate comparison Figure 12: Average reward rate comparison
between the preemptive/MD and partial between the preemptive/MD and partial
blocking/MD scheme for different arrival blocking/MD scheme for different arrival
rate ratios with r1'=0.05. rate ratios with r1'=0.20.
PB case 1 haS rm n’dim=0.5 and rmin’uw =O. PB case 1 haS rm|n’d|m:05 and rmin,user :0.
PB case 2 haS rm n‘d|m205 and rminyuw :05 PB case 2 haS rm|n’d|m:05 and rmin,user :05
PRE case 1 has pmax=24. PRE case 1 has pmax=24.
PRE case 2 has pyax=6. PRE case 2 has pyax=6.

The results presented in the figures were obtained after 10 adaptation epoches with the policy
iteration method. Each adaptation period contained 100 000 simulated call events. The perfor-
mance valuesin the figures are based on measurements of 400 000 call events after policy conver-

gence.

6. CONCLUSION

This paper has evaluated the efficiency of Call Admission Control (CAC) based on Markov
decision theory for two schemes that supports integration of guaranteed services and best effort
services. the standard preemptive scheme and the modified partial blocking scheme. The Markov
decision technique can be used to compute CAC policies that are optimal in terms of long-term
reward. The optimality is achieved by intelligent blocking of narrow-band ABR/UBR calls,
either completely, or at link states where typically the free capacity equals the size of awide-band
call.

The presented numerical results show that the Markov decision method yields higher long-
term reward than the complete sharing method when the ability to create sufficient capacity for
wide-band CBR calls through partia blocking/preemption islimited. The results aso show that

14



the modified partial blocking scheme, which alows total preemption (rmin user=0), gives the

highest average reward rate.
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