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This paper presents an adaptive scheme for a sub-function in ATM network routing, called
link allocation, under blockable narrow-band and queueable wide-band call traffic assumptions.
The scheme adapts the link allocation policy to the offered Poisson call traffic such that the long-
term reward is maximized. It decomposes the link allocation task into a set of link admission con-
trol tasks, formulated as semi-Markov Decision Problems. The link admission control policies
are adapted by the policy iteration algorithm. The long-term reward (throughput), fairness and
average waiting time in the queue of the scheme are evaluated numerically.

1.  INTRODUCTION

The link allocation problem arises in ATM network routing when a trunk group consists of
several parallel physical links. The objective of the link allocation function is to select links for
new calls such that the reward over time is maximized and the network availability is maintained.
In order to maximize the reward over time, narrow-band calls should usually not be accepted on
links which have a free capacity that equals the size of a wide-band call. The rejection of narrow-
band calls reserves bandwidth for future wide-band calls on the link, which increase the reward
over time. In general, the reward loss due to rejection of narrow-band calls should be traded off
against the reward gain of accepting a future wide-band call.

Fairness is a typical network availability constraint that can be obtained by access control
and/or call queueing. Partial sharing (class limitation) and trunk reservation are examples of link
access control schemes that can provide fairness, in contrast to the complete sharing scheme
which gives  excessive blocking for wide-band calls [1]. Another alternative is queueing of wide-
band calls when the link is busy. File transfer and medical imaging are examples of wide-band
services that can tolerate moderate call set up delay. In [2], Serres and Mason derive performance
measures for a single link system with blockable narrow-band and queueable wide-band call traf-
fic. In their work, narrow-band calls enter the link whenever there is sufficient capacity, indepen-
dently of the number of wide-band calls in the queue. There is also a cut-off parameter r0 that
specifies the maximum number of wide-band calls on the link. An arriving wide-band call is
delayed in an infinite queue if r0 wide-band calls are active on the link or if there is insufficient
capacity to carry a wide-band call.

In this paper, we consider a multi-link system with blockable narrow-band calls and queueable
wide-band calls. Each link has an associated finite queue for wide-band calls. The link allocation
policy is implemented by a set of independent link admission control policies which are state-de-
pendent. This means that a link can block a narrow-band call although there is sufficient capacity
on the link. A further difference with [2] is that no cut-off parameter is used for wide-band calls.



In a previous paper, we have analyzed a link allocation scheme with blockable call traffic using
the Markov decision approach [3].

An optimal link admission control policy can be formulated using Markov decision theory
[4,6,7]. The Markov decision policy maps states to admission decisions (actions), i.e. accept or
reject. At each state transition, a state-dependent reward is delivered to the system. The Markov
decision approach evaluates the long-term reward obtained when starting in different states with
different actions. This evaluation is used to find the optimal policy. The decision task model com-
prises the state transition probabilities and the expected reward delivered at each state transition.

Dziong et al. have applied the Markov decision approach to the network routing problem, also
assuming blockable narrow-band and queueable wide-band call traffic [5]. Our approaches dif-
fers mainly in the definition of the state-dependent reward. Dziong et al. let the reward depend
on the current queue size and on the number of active narrow-band calls. We let the reward
depend on the number of active narrow-band calls and on the number of active wide-band calls,
but not on the queue size. Hence, we consider only the problem of efficient resource utilization,
and not the problem of restricting the queueing delay.

Our numerical results show that the fairness between the call classes depends on the maximal
queue size. The results also show that the Markov decision method is more efficient in terms of
long-term reward than the method proposed by Serres and Mason.

The paper is organized as follows. In the next section, the link allocation problem and its
decomposition are introduced. Section 3 presents a Markov decision model for the link admis-
sion control tasks. Section 4 describes the policy iteration technique of Markov decision theory.
Section 5 presents the numerical results. Section 6 concludes the paper and points out directions
for future work.

2.  THE LINK ALLOCATION PROBLEM AND ITS DECOMPOSITION

In the target link allocation problem, a group of M links with capacity Ci [units/s],
i�I={1,...,M}, is offered calls from a narrow-band and a wide-band call class. Calls belonging
to a class j�J={1,2} have the same bandwidth requirements bj [units/s], and similar arrival and
holding time dynamics. Class index 1 and 2 corresponds to the narrow-band and wide-band call
class, respectively. We assume that class-j calls arrive according to a Poisson process with rate
�j [s–1], and that the call holding time is exponentially distributed with mean ���j [s]. In this work,
the parameter bj is given by the peak ATM cell transmission rate, since deterministic cell multi-
plexing is assumed. Moreover, we assume a uniform call charging policy, which means that the
long-term reward is proportional to the cell throughput at the call level.

Blocked narrow-band calls are lost while blocked wide-band calls are either lost or delayed
in a finite queue associated with one of the links. The length of each queue can take on the values
qi�Qi={0,1, ..., qmax}. An individual queue is served when there is sufficient free capacity on
the link to accept a wide-band call.

The task is to find a link allocation policy � that maps request states (j,x) � J×X to allocation
actions a�A,  �:  J×X�  A, such that the long-term reward is maximized. The set A contains the
possible allocation actions, {ACCEPT(1), ..., ACCEPT(M), REJECT}, where ACCEPT(i) corresponds to
accepting the call on link i�I. The set X contains all feasible system states, and is given by the
Cartesian product of sets of feasible link sub system states,  Xi,

Xi � �(ni1, ni2, qi) : qi � 0, ni1, ni2 � 0, ni1b1 � ni2b2 � Ci�	
�(ni1, ni2, qi) : qi � {1, 2, ..., qmax}, ni1, ni2 � 0, Ci 
 b2 � ni1b1 � ni2b2 � Ci �, (1)



where nij is the number of class-j calls accepted on link i. For later use, we also introduce the set
of feasible link states when the current queue size is zero:

Ni � �(ni1, ni2) : ni1, ni2 � 0, ni1b1 � ni2b2 � Ci�, (2)

The size of the system state space X increases rapidly with number of links in the group. To
obtain a feasible computational complexity we therefore decompose the link allocation task into
a set of independent link admission control tasks, and formulate these as semi-Markov decision
problems.

3.  A MARKOV DECISION MODEL FOR A SINGLE LINK ADMISSON CONTROL

This section presents a Markov decision model for a single link admission control task. The
Markov decision model specifies a Markov chain which is controlled by actions in each state.
The actions result in state transitions and reward delivery to the system. The control objective
is to find the actions that maximize the reward accumulated over time. In the current application,
the Markov chain evolves in continuous time, and we therefore face a Semi-Markov Decision
Problem (SMDP). For ease of presentation, the link index sub script is dropped below. For exam-
ple, we write nx instead of nxi.

The SMDP state x corresponds to a link sub system state in the previous section, i.e.
x=(nx1,nx2,qx)�X. The SMDP action a is represented by a vector a=(a1, a2), corresponding to
admission decisions for presumptive call requests. Thus, the action space becomes 

A = {(a1,a2) : aj�{0,1}, j=1, 2}, (3)

where aj=0 denotes call rejection and aj=1 denotes call acceptance. The permissible action space
in state x is a state-dependent subset of A:

A(x) = {(a1,a2)�A: a1=0 if nx1b1+nx2b2=C and a2=0 if q=qmax}. (4)

The Markov chain is characterized by state transition probabilities between state pairs (x,y).
The state transition probability from state x to state y under action a=(a1,a2) in state x is:

pxy(a) �
�

�



�

�

nxj�j�(x, a), ny � nx 
 �j, qy � qx, nx 
 �j � �2 � N,
nxj�j�(x,a), ny�nx
�j ��2, qy�qx
1�Q, nx
�j ��2� N,

�ijaj�(x,a), ny�nx��j, qy�qx, nx��j � N,
�i2�(x,a), ny�nx, qy�qx�1�Q, nx��2 � N,

0 otherwise

(5)

where nx and ny denotes the link states (nx1,nx2) and (ny1,ny2) respectively, �j  denotes a vector
with zeros except for a one at position j, and �ij   denotes the arrival rate of class-j calls to link i,
and is defined by a load sharing assumption [4]:



 

�ij � �j

�ij

�
k�I

�kj

, i � I, j � J, (6)

where �ij denotes the measured rate of accepted class-j calls on link i. The quantity �(x,a) denotes
the average time until the next call event in state x: �(x,a)={�j�J [nxj�j  + �ijaj] }–1.

The first term in the state transition probability expression above gives the state transition
probability for a class-j call arrival to a link with some free capacity. The second term gives the
state transition probability for a wide-band call arriving to a busy link with a non-full wide-band
call queue. The third term gives the state transition probability for a class-j call departure which
does not result in sufficient free capacity to accept a wide-band call from the queue. The fourth
term gives the state transition probability for a class-j call departure which allows a wide-band
call to be accepted from a non-empty wide-band call queue.

The expected accumulated reward in state x is given by R(x,a)=q(x)�(x,a), where the reward
accumulation rate is given by q(x)�	j�Jrjnxj�j. The quantity rj  is the absolute reward of carrying
a type-j call. In order to maximize the overall call level throughput, rj should be equal to the prod-
uct of class-j’s bandwidth requirement and its mean holding time, i.e. rj= bj ���j.

In order to solve the value determination step of the Markov decision task, the continuous-
time SMDP model must first be transformed into a discrete-time MDP model [7]:
 

p~xy(a) �
�
�

�

�

�
�(x,a)

pxy(a), y �x, x�X and a� A(x),

�
�(x,a)

pxy(a) �[1
 �
�(x,a)

], y� x, x�X and a� A(x),

R
~
(x, a) � �

�(x, a)
R(x, a) x � X and a � A(x),

(7)

where � is the size of the discrete time step, chosen such that 0< � � min x,a � (x,a).  For example,
� = { �j�J [ Nij �j + �ij] }–1 , where Nij=Ci/bj denotes the maximum number of class-j calls carried
by link i.

4.  ADAPTIVE POLICY ITERATION

This section describes a method for solving the link admission control tasks, formulated as
semi-Markov decision problems. The method of choice is policy iteration, which is one of the
computational techniques within Markov decision theory to determine an optimal policy.
Another approach is reinforcement learning, which can be used to do model-free Markov deci-
sion optimization [3].

A fundamental quantity of Markov decision theory is the evaluation function. The evaluation
function is defined for each state in the state space and measures the accumulated reward received
during an infinite time interval, starting in the given state. The evaluation function is used as a
tool to find the optimal policy.

The policy iteration approach computes a series of improved policies in an iterative manner.
The computation of an improved policy  �k+1 from the current policy �k involves three steps:



� task identification

� value determination

� policy improvement
The first step involves determining the Markov decision model, i.e. the state transition proba-

bilities and the expected rewards. These quantities are parameterized by link call arrival rates �ij
and call departure rates �j. The arrival/departure rates are obtained from measurements to make
Markov decision model adaptive to actual traffic characteristics. The measurement period corre-
sponds to the policy improvement period. The measurement period should be of sufficient dura-
tion for the system to attain statistical equilibrium.

The second step involves computing the evaluation function for the current policy. This is effi-
ciently done by the method of successive approximations. This method relies on a basic equation
of Markov decision theory. The equation states that the reward received within n decision epochs
starting in given state x, should equal the expected immediate reward received after the first deci-
sion epoch, plus the expected accumulated reward within n–1 decision epochs starting from the
neighbor states {y}:

Vn(x,�k) � R
~
(x, a) � �

y�X

p~xy(a) Vn
1(y,�k) ; x � X. (8)

A full description of the value determination algorithm, called the method of successive
approximations, can be found in the appendix. The method of successive approximations can be
proved to converge to the correct evaluation function in a finite number of steps, provided that
the state and action space are finite [7].

The third step is the actual policy improvement. The new action in each state (the new policy
�k+1) is determined by searching for the action that maximizes the sum of the immediate reward
and the expected evaluation of the neighbor states:

maxa�A(x)
{R

~
(x, a) � �

y�X

p~xy(a) V(y,�k)} ; x � X. (9)

Where V(y,�k) denotes the evaluation function obtained from the value determination step.
Since the search involves the evaluation function of the current policy �k and not of the new
policy �k+1 (which is unknown) we are not sure to find the optimal action. However, the method
can be proved to converge to an optimal policy in a finite number of iterations in the case of finite
state and action space [7].

During a policy improvement period, new calls are allocated according to two functions
obtained from the Markov decision computations: the admission gain function and the queue
gain function. The gain functions measure the increase in long-term reward induced by the cont-
rol action. The admission gain function for a class-j call offered  to a link is given by the difference
V(nx+�j,qx,�k)–V(nx,qx,�k). The corresponding queue gain is defined as
V(nx,qx+1,�k)–V(nx,qx,�k). The admission gain function is computed for each link that has some
free capacity. The queue gain function is computed for wide-band call arrivals which find the link
busy. The link which has the maximal positive admission gain or queue gain is selected to carry
or queue the new call. The call is rejected if the maximal admission gain or queue gain is negative.

The proposed method can be summarized as follows: Choose initial link admission control
policies and evaluation functions for all the links. During a finite period, allocate calls according
to the admission/queue gain functions associated with the chosen evaluation function. At the
same time, measure traffic statistics (call arrival rates, link call acceptance rates and call depar-



ture rates) in order to determine the Markov decision task for the current policies. Evaluate the
applied policies in the context of the current Markov decision tasks, using the method of succes-
sive approximations, and improve the policies for all the links. Apply the new policies during
the next period, measure the traffic statistics and repeat the policy evaluation and the policy
improvement step and so forth.

5.  NUMERICAL RESULTS

This section evaluates the performance of the proposed link allocation scheme. The perfor-
mance measures of interest are the call level throughput, the per-class blocking probabilities, and
the average waiting time in the queue.

The results are based on simulations for a link group with M=3 links with capacities Ci=C=24
[units/s], which is offered different mixes of narrow-band and wide-band call traffic. The band-
width requirements are b1=1, b2=6 [units/s] and the mean call holding times 1/�1=1/�2=1 [s]. The
curves presented in all figures are obtained after averaging over 30 simulation runs. 95% confi-
dence intervals are also showed for each curve.

The first figure shows the call level throughput for different mixes of narrow-band and wide-
band call traffic. The arrival rates �1 and �2 [s–1] were varied so that:

b1�1
MC�

�
b2�2

MC�
� 1.0 (10)

The maximal value of the arrival rate ratio �1/�2  is 6, which corresponds to a 50% load fraction
for the narrow-band class. A step size of 0.2 in the arrival rate ratio has been used when plotting
figures 1 and 2. As can be seen in the figure 1, the throughput is improved when increasing the
maximal queue size. However, as the maximal queue size increases, the relative improvement
is reduced.

The second figure shows the per class blocking probabilities for a maximal queue size of 1,
for the same traffic mixes as in figure 1. When �1/�2 = 0.2, the narrow-band class is usually com-
pletely blocked. The unfairness is due to the fact that the Markov decision approach attempts to
maximize the throughput. However, the fairness of the traffic classes can be controlled by vary-
ing the absolute reward rj of carrying a class-j call [4]. When the relative reward of carrying a
given class is increased, its blocking probability will decrease.



 

Throughput [units/s] Per-class blocking probability

�1��2

Figure 1. Call level throughput versus 
arrival rate ratio for different maximal
queue sizes.

Figure 2. Per-class blocking probability 
versus arrival rate ratio for qmax=1.
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A further investigation of the link admission control policies obtained for figure 2 shows that
for arrival rate ratios in the interval 0.2 < �1/�2�1.0, two links will usually block narrow-band
calls completely. Similarly, in the interval 1.0 <�1/�2�2.0, one link will usually block narrow-
band calls completely and in the interval 2.0 < �1/�2�6, all three links will typically carry nar-
row-band calls. Furthermore, so called  “intelligent blocking” of the narrow-band class is usually
performed at one or several links in the interval 0.2 < �1/�2�2.0. The intelligent blocking typi-
cally occurs when the link has a free capacity that equals the size of a wide-band call. By rejecting
the narrow-band call request, bandwidth is reserved for the wide-band class, which increases the
long-term reward. However, if many narrow-band calls are accepted on the link, at least one of
them is likely to depart before the next wide-band call arrival. Hence, narrow-band calls can be
accepted, although the free capacity equals the size of a wide-band call.

An examination of the queue gain functions V(nx,qx+1,�k)–V(nx,qx,�k) reveals that the queue
gain values are higher when many of the active calls are from the wide-band class. This is due
to the fact that when many wide-band calls are present on the link, there is a relatively low waiting
time for service of the queue.

The third figure shows the per class blocking probabilities for different values of the maximal
queue size, assuming the traffic mix �1/�2=6. The blocking probability for the wide-band class
drops fairly quickly with the maximal queue size, and is approximately equal to the narrow-band
blocking probability for a maximal queue size of 2. Obviously, the fairness between the traffic
classes can be controlled by varying the maximal queue size.

The fourth figure shows the average waiting time in the queue for different values of the maxi-
mal queue size, again assuming the traffic mix �1/�2=6. The average waiting time is computed
over all the queues in the link group. Apparently, the waiting time increases almost linearly with
the maximal queue size. This figure is useful when determining the maximal allowed queue size
for a given upper limit of the waiting time.



Figure 3. Per-class blocking probability for
different maximal queue sizes.

Figure 4. Average waiting time in queue
for different maximal queue sizes.
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The fifth figure compares the throughput in the single link case for the Markov decision
method and the simple method proposed by Serres and Mason [2].  The latter method is modified
so that it implements a finite queue. The reason is that the original method [2] requires the offered
wide-band traffic load to be relatively low so that the queue size does not grow to infinity. In fig-
ure 5, the arrival rate ratio has been varied so that the utilization becomes 100% as in figure 1
and 2. As can be seen in the figure, the Markov decision method yields a higher throughput in
the interval 0<�1/�2�4.0, i.e. when intelligent blocking is relatively important. The cut-off
parameter r0 of the simple method for the maximal number of active wide-band calls were set
to 3.

The sixth figure shows the per-class blocking probabilities for the Markov decision method
and the simple method described above. The simple method has much smother blocking curves
than the Markov decision method. The explanation is again the intelligent blocking feature of
the Markov decision approach.

�1��2 �1��2

Figure 5: Call level throughput versus
arrival rate ratio for qmax=1.

Figure 6. Per-class blocking probability 
versus arrival rate ratio for qmax=1.
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The results presented in the figures where obtained after 5 adaptation epochs with the adaptive
policy iteration method. Each adaptation period contained 1000 simulated call events. The
parameters of the value determination algorithm were set as follows: �=1/60, and 
�0.005. The
performance values in the figures are based on measurements of 300 000 call events after policy
convergence.

6.  CONCLUSION

This paper has proposed a link allocation scheme for blockable narrow-band and queueable
wide-band call traffic in ATM networks. The queueing increases not only the the fairness
between the traffic classes, but also the long-term reward. The choice of maximal queue size
depends on the fairness objective and the allowed average waiting time in the queue. A compari-
son with the simple scheme [2] in the single link case shows that the Markov decision method
yields a higher long-term reward for certain traffic mixes.

The link allocation task is decomposed into a set of independent link admission control tasks,
which are formulated as semi-Markov decision problems. Link call arrival rates and call depar-
ture rates, obtained from on-line measurements, parameterize the Markov decision model of a
link admission control task. The policy iteration algorithm of Markov decision theory is used to
find link admission control policies with optimal long-term reward. During the policy improve-
ment period, new calls are allocated according to the admission gain function and the queue gain
function, which are computed by the policy iteration algorithm.

In the future work, we will consider routing of blockable narrow-band and queueable wide-
band call traffic. Then we also will consider the trade off between efficient resource utilization
and queueing delay.

APPENDIX: Value Determination Algorithm

Step 1 (initialization).   Choose initial values V0(x,�k),  x�X. Let n :=1.

If k=0 then 

  0 � V0(x,�k) � maxa�A(x) R
~
(x, a),

else 
   Let V0(x,�k)=Vn(x,�k–1).

Step 2 (recursion step). Compute the n-step value function:

                  

Vn(x,�k) � R
~
(x, a) � �

y�X

p~xy(a) Vn
1(y,�k) ; x � X. (A1)

Substitution for the MDP data  transformation yields: 
                                                                                                                                                      
Vn(x,�k) � R(x, a) ���(x, a) � Vn
1(x,�k) �

� ���(x, a) �
y��

pxy(a) {Vn
1(y,�k) 
 Vn
1(x,�k)} ; x � X. (A2)

Finally, inserting the expressions for the state transition probabilities we get:



 
Vn(nx, qx,�k) � q(x)�� Vn
1(nx, qx,�k)

� �
j�J

� nxjj
�j�{Vn
1(nx 
 �j, qx,�k) 
 Vn
1(nx, qx,�k)}�

{nx
�j��2�N}

��
j�J

� �ijaj�{Vn
1(nx � �j, qx,�k) 
 Vn
1(nx, qx,�k)}�{nx��j�N}

� � �i2�{Vn
1(nx, qx � 1,�k) 
 Vn
1(nx, qx,�k)}�{nx��2�N, qx�1�Q}

� �
j�J

� nxjj
�j�{Vn
1(nx 
 �j � �2, qx 
 1,�k) 
 Vn
1(nx, qx,�k)}�

{nx
�j��2�N, qx
1�Q}

x � X (A3)

The sub script at the right parentheses in the formula above gives the condition for inclusion
of the parenthesized term in the overall sum. 

Step 3 (convergence test). Compute the bounds

mn = min x�X  �Vn(x,�k)
  and

Mn = max x�X   �Vn(x,�k),

where  �Vn(x,�k)�Vn(x,�k)�Vn–1(x��k��

Stop the iteration if 0�Mn–mn�
mn, where 
 is a predetermined error.
Otherwise, let n:=n+1 and go to step 2.

ACKNOWLEDGEMENTS

The author would like to thank Jakob Carlström and Søren Blaabjerg for stimulating discussions.
This work was financially supported by NUTEK, the Swedish National Board for Industrial and
Technical Development.

REFERENCES

1. COST 242, Methods for the Performance Evaluation and Design of Broadband Multi-
service Networks, Final report, part 3 (1996).

2. Y. Serres and L. Mason, A Multiserver Queue with Narrow- and Wide-Band Customers
and Wide-Band Restricted Access, IEEE Trans. on Commun., vol. 36, no. 6 (1988).



3. E. Nordström and J. Carlström, A Reinforcement Learning Scheme for Adaptive Link
Allocation in ATM Networks”, in proc. Int. Workshop on Appl. of Neural Networks to
Telecommun., IWANNT’95, pp. 88-95, Stockholm, Sweden (1995).

4. Z. Dziong and L. Mason, Call Admission and Routing in Multi-Service Loss Networks,
IEEE Trans. on Commun., vol. 42, no. 2 (1994).

5. Z. Dziong, K. Liao and L. Mason, Flow Control Methods in Multi-Service Networks
with Delayed Call Set Up, in proc. of INFOCOM’90, pp. 39–46, San Francisco, USA,
(1990).

6. K. Ross and D. Tsang, Optimal Circuit Access Policies in an ISDN Environment: A
Markov Decision Approach, IEEE Trans. on Commun., vol. 37, no. 9 (1989).

7. H. Tijms, Stochastic Modeling and Analysis - a Computational Approach, Wiley
(1986).


