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Reinforcement learning is applied to admission control of self-similar call traffic in broadband
networks. The reinforcement learning method solves a Markov Decision Problem without the
need for a model of the dynamics of the controlled system. A state descriptor containing continu-
ous-valued running averages of the call inter-arrival times is employed. Radial-basis function
neural networks approximate the value function. In simulations, the proposed method yields
higher throughput than methods that do not exploit the self-similarity of the call arrival process.

1. INTRODUCTION

In broadband communications networks for integrated services, such as Asynchronous Trans-
fer Mode (ATM) networks, resource control is of crucial importance for the network operator as
well as the network users. The objective of resource control is to maintain the service quality
(Grade of Service) for network calls while maximizing the network operator’s revenue. At the
call level, service quality is measured in terms of call blocking probabilities, and the resource to
control is bandwidth. If a uniform call charging policy is used, the revenue is proportional to the
long-term bandwidth utilization.

Reinforcement learning [1, 2] offers a way of finding optimal solutions to Markov Decision
Problems by iterative refinement of the control policy. Reinforcement learning algorithms sam-
ple the immediate rewards (payoffs) upon state transitions in the controlled system or in a simula-
tion model. Unlike dynamic programming [3], no model of system state transition probabilities
and expected immediate rewards is needed. Thus, reinforcement learning is suitable where such
a model is expensive to obtain. Further, by combining reinforcement learning with parametric
function approximators (such as neural networks), Markov Decision Problems with very large
or even infinite state spaces may be approximately solved by reinforcement learning.

In [4, 5], we proposed a method based on reinforcement learning for link allocation, a sub-
problem of network routing. In simulations with Poisson call arrival processes, this method out-
performed standard heuristics, and achieved performance similar to that of Dziong’s and Mason’s
dynamic programming solution [6]. Marbach et al. have shown how to extend the use of reinfor-
cement learning to network routing [7], also assuming Poisson call arrival processes.

In this paper, we do not assume Poisson call arrival processes. Measurements of network arriv-
als have displayed many examples of statistically self-similar arrival processes [8, 9, 10]. This
traffic is bursty on several time-scales, a feature that should be considered in the design of effi-



cient resource control methods. We present a link admission controller for such arrival processes.
The controller is based on reinforcement learning with neural networks, employing a state des-
criptor containing the number of active calls per service class along with measures of the history
of the arrival processes.

Although this paper concentrates on the link admission control problem, the link admission
controller we describe may be used as a building block for optimal link allocation or routing, as
shown in [4, 6, 7].

2. SELF-SIMILAR CALL ARRIVAL PROCESSES

The limitations of the traditional Poisson model for network arrival processes have been dem-
onstrated in a number of studies [9, 10]. Poor correspondence with the Poisson process has been
shown for a range of traffic types that often are modelled as being Poisson, for example arrivals
of HTTP requests and machine-initiated TCP connections. This difference is manifested by
heavy-tailed inter-arrival time distributions and long-term correlations in the arrival processes.
Various self-similar (fractal-like) models for such processes have been shown to correspond bet-
ter with this traffic.

In this paper, control of self-similar call arrival processes in a broadband multi-rate networks
is studied. One example of where this situation occurs is an ATM network carrying TCP/IP traffic
with self-similar connection arrivals.

2.1. Properties of Self-Similar Traffic
A self-similar arrival processes has no natural burst length. On the contrary, its arrival intensity

varies considerably over many time scales. This makes the variance of its sample mean decay
slowly with the sample size, and its auto-correlation function to decay slowly with time,
compared to Poisson traffic [10].

The complexity of control and prediction of Poisson traffic is reduced by the memory-less
property of the Poisson process: its expected future depends entirely on the (constant) arrival
intensity, not on the history of the process. On the other hand, the long-range dependence of self-
similar traffic makes it possible to improve the predictions of the process future by observing the
process history. Norros [11] gives a rule-of-thumb for predicting one type of self-similar pro-
cesses (fractional Brownian motion): “one should predict (with the appropriate nonuniform
weights) the next second with the latest second, the next minute with the latest minute, etc.”

A compact statistical measure of the degree of self-similarity of a stochastic process is the
Hurst parameter [8]. For self-similar traffic this parameter takes values in the interval (0.5, 1],
whereas Poisson processes have a Hurst parameter of 0.5.

2.2. Traffic Synthesis by The Fractional ARIMA Process
There exist many methods for synthesis of self-similar processes. For an overview, see for

instance [8, 10]. In this paper, synthetic traffic traces are generated from a Gaussian fractional
ARIMA (0, d, 0) model [8].

First, N0 zero-expectance continuous values from a fractional ARIMA (auto-regressive inte-
grated moving average) process Zi are generated by a convolution formula:



Zi �

N0

j�0

ci�jej, i 
 �0, ���, N0
� , (1)

where ej are the normally distributed innovations of the process, having mean 0 and variance 1.
The coefficients cj are given by:

cj �
�(j � d)

�(d)�(j � 1)
, j 
 �0, ���, N0

� , (2)

where � is the standard gamma function. The cj’s can be computed recursively:

cj�1 �
j � d
j � 1

cj, c0 � 1, j 
 �0, ���, N0
� . (3)

The resulting process is asymptotically self-similar, with Hurst parameter H � d� 0 . 5,

0 � d � 0 . 5. The increments Z
~

i are then generated from Zi by adding a constant d, truncating
negative values to zero, and rounding off to integers. Finally, the duration of the basic time slot

is fixed, and Z
~

i, i � 1, ���, N0, individual arrival times are drawn from a uniform distribution

within their respective time slots. Thus, the resulting traffic trace contains �N0

i�1
Z
~

i arrival times.

The choice of the duration of the time slot determines the intensity of the arrival process.

3. THE LINK ADMISSION CONTROL PROBLEM

In the link admission control problem, a link with capacity C [units/s] is offered calls from
K different service classes. Calls belonging to such a class j 
 J = {1 , ..., K}  have the same band-
width requirements bj  [units/s]. In the set-up procedure, the terminal that requests the new call
declares what service class the new call belongs to.

We focus on arrival processes with memory, so we assume that calls arrive according to self-
similar processes, and that their holding times are exponentially distributed with mean ���j  [s].

Access to the link is controlled by a policy � that maps states x 
 X to actions a
A, �: X	
A. The set X contains all feasible link states, and the action set A is

A � �(a1, a2) : aj 
 {0, 1}, j 
 J�,

where aj  is 0 for rejecting a new class-j call and 1 for accepting it. The set of link states is given
by X = N � H, where N is the set of feasible call number tuples, and H is the Cartesian product
of some representations, hj , of the histories of the per-class call arrival processes (for the memory
of self-similar arrival processes). N is given by

N ��
�
�

n � (n1, ���, nK) : nj � 0, j 
 J; 

j
J

njbj � C�
�
�

 ,

where nj  is the number of type-j calls accepted on the link.



The objective of the link admission controller is to learn a policy that maximizes the long-term
reward (revenue) on the link. By taking optimal actions, the policy controls the (unknown) proba-
bilities of state transitions so as to increase the probability of reaching states that yield high long-
term rewards. We assume a uniform call charging policy, which means that the reward rate �(t)
at time t is equal to the carried bandwidth at time t:

�(t) ��
j	J

nj(t)bj (4)

Time evolves continuously, with discrete arrival and departure events k � 0, 1, 2��� The dis-
counted immediate reward, r(xk), received between entering a state xk at time tk and the next state
xk+1 at time tk+1, is

r(xk) � �
tk�1

t�tk

e��(t�tk)�(t)dt � 1
�

1� e���tk�1�tk
� �(tk) , (5)

where �(tk) is the reward rate after taking an action at time tk. The exponential discounting of
rewards, using a constant � � 0, prevents the sum of future expected rewards (assuming x0 = x
and t0 = 0) from growing towards infinity. The value function V�(x) estimates the long-term re-
ward under a policy �:

V�(x) � lim
N��

E���
�N
k�0

e��tk r(xk)
����xk � x���

, x 	 X (6)

 The network availability constraint (limited call blocking probabilities) is currently not consid-
ered in the objective function.

A feature of optimal link admission control is “intelligent blocking”. This typically occurs
when a link has a free capacity equal to the bandwidth of a wide-band call. By rejecting a narrow-
band call request, the controller reserves bandwidth for the next wide-band call, in order to
increase the expected long-term reward.

4. REINFORCEMENT LEARNING SOLUTION

This section describes our reinforcement learning method for link admission control. Before
presenting the method, we show how to incorporate statistics from the arrival process history into
the link state descriptor.

4.1. Sufficient Statistics from The Process History
Statistics from previous observations of the arrival process for calls from a class j are repre-

sented by history vectors hj  	 Hj . As discussed by Bertsekas [3], these should fulfill the follow-
ing two requirements:

1. Preservation of the information that is essential for control
2. A constant, small vector dimension



The first requirement is known as sufficient statistics. The second one facilitates learning by
limiting the size of the state space to be explored. Along with the call-number tuples, the suffi-
cient statistics should constitute approximations of Markovian states, i.e., no information which
is useful for predicting the future of the system is discarded.

We chose the following ansatz to representing the history of the arrival process: for all classes
j � J, M running averages hj  = (hj 1, ..., hjM) of the inter-arrival times were computed recursively
using forgetting factors �1, ..., �M:

hji(k) � �i�tj(k) � tj(k� 1)� � (1� �i)hji(k� 1) , (7)

where tj (k) is the arrival time of the k-th call from class j. This choice was supported by experi-
ments with prediction of short-term arrival rates. We trained a feed-forward neural network on
synthetic traffic traces with h as input. The network learnt to make good predictions of the future
short-term arrival rate. This shows that (n, h) serve as approximate sufficient statistics. Another
argument for using mean inter-arrival times in the state descriptor is the strong dependence of
the optimal policy on the arrival rates in control of constant-rate traffic, e.g. Poisson traffic.

By matching the forgetting factors �i to the distribution of the inter-arrival times, the computa-
tion of the inter-arrival time estimates can be made to comply with Norros’ rule of thumb, quoted
in section 2.1 This is done by setting

1� �i � e���� , (8)

where 1�� is the mean per-class inter-arrival time in the system. This means that the discounting
window used for future rewards, and thereby inter-arrival times, is the same as the discounting
window used for historical inter-arrival times. Heuristically, some �i are set to values larger than

1� e����, and some �i to smaller values.

4.2. Temporal-Difference Learning with Neural Networks
When the link admission controller makes a decision in a state x, it is always possible to deter-

mine what new configuration x� will occur immediately after the action is performed. For exam-
ple, if a class-j call arrives and the current state is x = (n1, ..., nj , ..., nK, h), the state will be
unchanged after a reject action, whereas it will be x� = (n1, ..., nj + 1, ..., nK, h) after an accept
action (provided x� � X). By learning values of such afterstates [1] (henceforth denoted with a
prime �), instead of state-action pairs (x, a) as in e.g. Q-learning [1], the value function can be
defined over a smaller input domain, provided that the mapping from state-action pairs to afters-
tates is many-to-one. This is the case in the link admission control problem.

Due to the continuous-valued history vectors, the number of afterstates is infinite, making
lookup-table storage of the value function impossible. Instead, a parametric value function V(x�),
that models V�(x�) in equation 6, is realized by feed-forward neural networks with normalized
Gaussian radial-basis function (RBF) units [13]. For each n � N, a RBF network with MK inputs
approximates the value function Vn from the history vector h = (h11, ..., hMK):

Vn(h) �	S
i�1

wi fi(h) , (9)



where S is the number of basis functions, wi  are the network’s weights, and fi  are the basis func-
tions:

fi(h) � exp�
�
�

�h� vi
�2


2
i

��

 . (10)

The center vectors vi  are MK-dimensional and the width parameters 
i  are scalar.
To simplify computations, the radial-basis functions are factorized. This is done by computing

the activation of a basis function with MK inputs as the product of K basis functions (one per ser-
vice class) with M inputs each. Further, the outputs of the RBF’s are normalized class-wise to the
sum of 1 before multiplication (not shown in equation (10)). The center and width parameters
of the RBFs are chosen after inspection of the data set to cover the history vector space.

 The link admission controller learns values by Sutton’s TD(0) temporal-difference learning
rule [1]. The policy 	(x) is implicitly defined by the value function. During learning, actions are
selected stochastically, with high probability for the action resulting in the afterstate with the
highest associated values, using epsilon-greedy action selection [12]. As learning proceeds, the
degree of randomness is successively decreased, until finally the policy deterministically selects
the action that results in the highest after-state value. This trial-and-error search allows the con-
troller to explore the state-action space and improve the policy.

After every decision, the value V(x�k) of the previous after-state is adjusted by updating the
weights of the RBF network on the temporal-difference error, �(k):

�(k) � r(x	k) � e��(tk�1�tk)V(x	k�1) � V(x	k) (11)

using the same definitions as in section 3, but for afterstates instead of states. The least mean
squares (LMS) update rule gives, for the weights of the RBF network that corresponds to the call
number tuple nk (a part of xk):

wi(k� 1) � wi(k) � ��(k)�i
�hk
� , i � {1, ���, S}, (12)

where hk is the arrival history descriptor included in xk and � is a step size parameter.
The value function is updated on transitions caused by call arrivals as well as call departures.

For obvious service reasons, call departures must always be accepted.

5. SIMULATION RESULTS

The performance of the reinforcement learning method was evaluated in simulations, where
the link admission controller adapted to synthetic call traffic.

5.1. Synthetic Traffic Traces
We generated synthetic traffic traces containing arrival/departure pairs from two call classes

(K � 2), characterized by bandwidth requirements b1 = 1 (narrow-band) and b2 = 6 (wide-
band) [units/s] and call holding times with mean 1/�1 = 1/�2= 1 [s].

The self-similar call arrival processes were generated from a fractional ARIMA process with
Hurst parameter 0.85. The offset� was set to 4.0, and the inter-arrival times were linearly scaled

so that the mean long-term arrival rates �1 and �2 for the two classes fulfil



b1�1
�1

�
b2�2
�2

� �C (13)

where C is the capacity of the communication link and � is the mean relative load. Traces with
� �1.0, 1.2 and 1.5 were generated. The arrival rate ratio �1��2 was varied from 0.4 to 2.0.

5.2. Link Admission Control
We evaluated the performance of our proposed link admission controller in simulations using

the OPNET Modeler simulation software [14]. The simulated communication link had a capacity
of C = 24 [units/s], and was offered calls from the self-similar arrival processes.

For comparison, we repeated the simulations with two other link admission controllers. The
first one was a tabular reinforcement learning controller, using a lookup table instead of a neural
network for the value function. The second one used complete sharing: to accept a call if the free
capacity on the link is sufficient, i.e. no intelligent blocking.

The tabular reinforcement learning controller assumes Poisson arrival processes. From this
assumption, it follows that the call number tuples n � N constitute Markovian states. Conse-
quently, the value function table stores only one value per n.

The discount constant � of both the reinforcement learning controllers was set to 2.0. This val-
ue was chosen because it yields an approximate discounting of the value of the next state in the
TD(0) update rule (equation 11) of 0.9 — a typical value of the discount parameter in discrete-
time reinforcement learning. It also worked well in simulations. The step size � was linearly low-
ered from 0.09 to 0.01 during training.

For the reinforcement learning controller employing neural networks, two-dimensional
(M � 2) history vectors hj  were computed. The per-class arrival rate in the simulations varied
from 1.5 to 9.0. From this and equation (8), forgetting factors ��1, �2) = (0.1, 0.4) were deter-
mined. This choice was supported by simulations. The RBF networks (one per n � N) had 64

Figure 1. Throughput versus arrival rate
ratio for � = 1.0.

Figure 2. Throughput versus arrival rate
ratio for � = 1.25.
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Figure 3. Throughput versus arrival rate ratio for � = 1.5.
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radial-basis functions, factorized to 8 units per call class, plus a bias activation. Its weights were
initialized to favor acceptance of all calls in all states.

The reinforcement learning controllers were allowed to adapt to the first 400 000 simulated
arrivals of the traffic traces. The performance of all three methods was measured on the subse-
quent 400 000 arrivals.

Figure 1, 2 and 3 show throughput versus arrival rate ratio for � �1.0, 1.25 and 1.5, respec-
tively. Each data point is the averaged throughput for 10 traffic traces. Reinforcement learning
with RBF neural networks (RL/RBF) yields up to 1.6% better performance than tabular rein-
forcement learning (RL/TBL). Complete sharing (CS) consistently yields the lowest throughput;
up to 6.2% worse than RL/RBF.

The difference in throughput between reinforcement learning and complete sharing is highest
for low arrival rate ratios. The reason for this is that the throughput increase by reserving band-
width for high-rate calls is considerably higher than the loss of throughput from the blocked low-
rate narrowband traffic.

Figure 4 shows how the values learnt by the RBF network for � � 1 . 5, (n1, n2) � (6, 2),
vary with the long- and short-term history. The history parameters of the narrow-band class is
kept constant at typical values, h11 = h12 = 0.2, whereas those of the wide-band class are varied.
The values are high when the mean of previous inter-arrival times for wide-band calls is small,
probably because of correlations with future short inter-arrival times and thereby large potential
rewards. These variations are not possible with the tabular reinforcement learning method, which
stores only one value per combination of per-class calls (n1, n2).

Figure 5 shows the resulting border (where the difference V(7, 2)�V(6, 2) is zero) between in-
telligent blocking and not blocking of narrowband calls in (6, 2) for three different arrival rate
ratios and � � 1 . 5. In the plot, the long- and short-term history parameters are kept equal to
project the four-dimensional history vector space onto two dimensions. The curves are labeled
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Figure 5. The border between accepting and
rejecting (intelligent blocking)narrow-band
calls for various ratios of arrival rates. The
value by each borderline indicates the ratio
between call arrival rates.

with the ratios �1��2 between the rates of call arrival in the traffic traces. The difference is nega-
tive below and to the left of the curves (implying rejection of for narrow-band calls), and positive
above and to the right (implying acceptance). The rejection region is smaller for higher ratios,
where narrow-band calls are more probable.

6. CONCLUSION

We have presented a new method for link admission control of calls from self-similar arrival
processes. It learns a policy by reinforcement learning, using radial-basis function neural net-
works for approximation of the value function. In simulations, this method increased the through-
put slightly compared to a controller based on tabular reinforcement learning, and considerably
compared to a controller using complete sharing. These throughput differences are likely to in-
crease if the controllers are used as building blocks for link allocation or routing, where the val-
ues, not just the policy, affect decisions.

This work has demonstrated the capability of reinforcement learning to make use of parame-
ters that are relevant for a control problem, without explicitly modelling their influence on the
dynamics of the controlled system. It has also shown some limitations of modelling self-similar
traffic by Poisson processes in network control.

The issue of learning time and adaptation to varying arrival rate ratios was not particularly
addressed here. However, the reinforcement learning method with neural networks needs rela-



tively long time to converge. It therefore seems to be better suited for off-line learning on re-
corded traffic traces than to on-line learning. If the characteristics of the arrival process do not
change too frequently, on-line refinement of the policy may still be possible.
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