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Abstract
Link admission control (LAC) in broadband ATM networks is based on
evaluation of expected traffic performance. The traditional LAC approach
relies on approximate analytical performance models,  and can lead to an
over controlled network. This paper presents a hybrid LAC scheme which
uses a multi layer perceptron (MLP) to refine the performance estimate of a
traditional analytical approximation. An accurate but complex traffic per-
formance model is used to derive MLP target data. The numerical results
show that the MLP can improve the bandwidth efficiency.

1 Introduction

The Broadband Integrated Services Digital Network (B–ISDN) will be based on a
transport mode called Asynchronous Transfer Mode (ATM). ATM is a packet– and
connection–oriented switching and multiplexing technique, designed to support
virtually all communication services expected in the future. The bandwidth flexi-
bility, the capability to handle all services in an uniform way, and the possible use of
statistical multiplexing are advantageous properties of ATM. However, advanced
traffic control procedures are needed to maintain the performance of ATM connec-
tions. The underlying idea in broadband traffic control is to prevent congestion rath-
er than to react to it. The backbone in ATM traffic control will therefore consist of
connection admission control (CAC), traffic enforcement and traffic shaping. 

This paper deals with a subroutine of CAC called link admission control
(LAC), which is performed at each node along the network path connecting the
source and destination node. The purpose of LAC is to establish whether the link
can  accept a new connection request or if it should be rejected.  In particular, we
focuse on performance evaluation of a single ATM multiplexer (output buffer in an
ATM switch)  since this forms the basis for LAC.  A trade off between performance
evaluation accuracy and computational complexity is necessary to achieve accept-



able connection set up delays. The traditional approach is based on analytical
approximations, which may result in an over controlled network thereby under uti-
lizing the network resources, see e.g. [3,5,9,11]. This contribution presents a hybrid
approach, which use neural networks to improve the link bandwidth efficiency. The
suggested scheme comprises a supervised multi layer perceptron (MLP) [4], com-
bined with a tractable analytical approximation. To this end, we employ a variant of
the approximate fluid flow performance formula proposed in [8]. This simplified
analytical approach will always underestimate link performance. Hence, the MLP’s
role is to refine the evaluation result, by applying complementary knowledge of the
actual performance. Here, the accurate heterogeneous fluid flow model [6,7] and
approximations of it, are used to derive additional performance data.

2 Traffic Burst Model

The traffic carried by an individual link are assumed to originate from inde-
pendent and periodic on/off sources.  An periodic on/off source alternates determin-
istically between burst (on) periods and silent (off) periods with constant character-
istic durations. During the burst period, the source transmits packets (called  ”cells”
in ATM terminology), at a constant characteristic cell rate.  According to [8],  it is
widely believed, although not formally proven, that the periodic on/off source rep-
resents the ”worst case” output of the traffic enforcement function (e.g. implement-
ed by two running windows or two Leaky buckets). Hence, if the connections are
represented by periodic on/off sources, the performance analysis will be conserva-
tive. The periodic on/off source is characterized by three parameters [8,9]:

p: the peak cell rate, defined as the reciprocal of the constant inter–cell 
time within a burst,

m: the mean cell rate, defined as the as fraction of time the source is active,
multiplied with the peak cell rate, and

 ton: the burst period duration

It is very difficult to evaluate the link performance in the deterministic case.
However, it is known that more variable burst– and silent–period durations lead to
larger queueing build up [8]. In particular, if  exponentially distributed durations are
used, as in the fluid flow cased below, the performance analysis will again be con-
servative.

3 Link Performance Evaluation

The total or superposed traffic stream offered to an ATM multiplexer is usually ana-
lyzed in two time scales, called the cell scale and the burst scale. The cell scale con-
siders queue build–up (and buffer overflow) at the output buffer due to simulta-
neous cell arrivals. The burst scale considers queue build–up due to fluctuations in
the total arrival rate, which may exceed the link capacity during some periods.
Throughout this paper we only consider burst scale performance in terms of the cell
loss probability, and assume that the buffer  is dimensioned to resolve the cell scale
conflicts.



3.1 Fluid Flow Cell Loss Probability

The heterogeneous fluid flow queueing model [6,7] is a very accurate tool for eval-
uating burst scale performance. This model analyses an ATM multiplexer loaded
with connections of c different classes, each  comprising Nj  independent and homo-
geneous on/off sources (i.e. with equal  traffic parameters pj, mj and ton(j)).  The mul-
tiplexer is characterized by a buffer of B cells, and an output capacity of C cells/sec-
ond. The fluid approach  models the  traffic stream as a continuos (fluid) rate stream.
A c–dimensional Markov chain emulates the arrival rate process. The Markov
properties implies exponential active– and passive–period durations, which is of
practical importance. The underlying Markov state space S is indexed by the pos-
sible active–source combinations, i.e. S = { k=(k1, ..., kc) : 0�kj�Nj }. The state
space comprises a total number of Ns=(N1+1)(N2+1)...(Nc+1) states. Hence, the
size of the state space increases rapidly (geometrically) with the class sizes Nj.

Two time–independent probability distribution functions are of prime impor-
tance in the fluid analysis:

� = {�k}k�S : the stationary arrival rate distribution,
F(x)= {Fk(x)}k�S, 0�x�B  : the bivariate buffer occupancy distribution.

�k is the overall probability that the sources are in state k, and is given by the multi–
binomial distribution. Fk(x) is the probability that the sources are in state k, and that
the buffer content is less or equal to x. The Fk’s  are determined by solving a set of
first order differential equations associated with the Markov states. The standard
spectral expansion (eigenvalue–eigenvector) solution yields [6]:

F(x) � �
n�S

an exp(znx) �n , (1)

where  an  are  coefficients found from boundary conditions, zn are eigenvalues  and
�n are the corresponding (Ns dimensional) eigenvectors. The coefficients an consti-
tute the main computational burden and dictates the overall complexity of the fluid
flow model. The coefficients are calculated by solving a system of Ns coupled linear
equations which requires O(Ns

3) numerical operations. However, a simplified com-
putational approach for estimating the coefficients can be found in [1]. The approxi-
mation reduces the overall complexity to O(Ns

2).
 Once these probability distributions are found, the cell loss probability is easi-

ly calculated as the ratio between the loss cell rate and mean arrival cell rate:

Ploss �

�
{ k | k �p � C }

( k � p � C) (�k � Fk(B))

�
k �S

(k � p)�k
, (2)

where � denotes scalar vector multiplication, and p = (p1, ...., pc). The loss  rate is



obtained by adding the loss rates of  all overload states. For the multi–binomial ar-
rival rate distribution, the mean arrival rate  simply equals  N � m, where 
N = (N1, ...., Nc) and m = (m1, ...., mc).

3.2 Bounds of the Fluid Flow Cell Loss Probability

The fact that the computational complexity of fluid flow model rapidly increases
with the size of the state space Ns, severely limits its practical use. In particular, het-
erogeneous traffic mixes are hardy tractable in real time. Hence, the upper bound of
the fluid flow cell loss probability proposed in [8] is therefore of great importance.
Although no formal proof is given that validates the approach, it is supported by our
extensive numerical tests. The upper bound is approximated by the expression:

Ploss � Ploss(0)exp(z�B) (3)

The quantity z
�

 represents the asymptotic exponential decay rate as the buffer size
approaches infinity, and is given by the largest negative eigenvalue in the spectral
expansion (1). The quantity B denotes the actual buffer size. The magnitude Ploss(0)
is found by substituting the empty buffer boundary condition (Fk(0)=0 for k�p > C)
in expression (2). The resulting expression involves only the stationary arrival rate
distribution: 

Ploss(0) �

�
{ k | k �p � C }

( k � p � C) �k

�
k �S

(k � p)�k
. (4)

As for the computational burden, the decay rate z
�

 has only a complexity which
increases linearly with the number of classes c [6].  However, the magnitude
Ploss(0) may require significant computational effort since the complexity behaves
like O[(c+N)Ns], where Ns equals the size of the state space and  N=N1+....+Nc [9].
As already mentioned, Ns will increase rapidly when the number of classes, or the
class sizes increase. Fortunately, there exist approximations of  Ploss(0) with tracta-
ble complexity, e.g.  Chernoff bound [5,9] or large deviation [5,11]. Both these
methods require O(c) operations, and reduce the overall complexity of the final esti-

mate P
^

loss to the same order. 
The hybrid LAC scheme presented in the next section will also make use of

a lower bound of the fluid flow cell loss probability, based on the traditional asymp-
totic fluid flow formula in [7], which states that the spectral expansion (1) can be
approximated by the component associated with the largest negative eigenvalue.
The lower bound of the cell loss probability is approximated by the  expression:

Ploss � � a� exp(z�B)

�
{ k | k �p � C }

( k � p � C) ��(k)

�
k �S

(k � p)�k
, (5)



where a
�
  and  �

�
  are the coefficient respectively eigenvector associated with the

dominant eigenvalue z
�

. The computational approach described in [1] is recom-
mended for estimating the coefficient.  In this case, the overall computational com-
plexity of the lower (5) and upper bound (3) become equivalent, i.e. O[(c+N)Ns] in

the above notation.  However, an efficient lower bound approximation P
^

loss of the
Chernoff/Large deviation type is a subject for future work.

4  Hybrid Link Admission Control

The first objective of link admission control (LAC), is to maintain the link perfor-
mance, and the second is to optimize the link bandwidth utilization. LAC based on
the tractable upper bound yields link performance robustness, but not always link
bandwidth efficiency. This section presents an hybrid LAC approach, which com-
bines the tractable upper bound with nonlinear regression (function approxima-
tion), to improve this condition. The regression is performed by means of the stan-
dard multi layer perceptron (MLP) neural network [4], and concentrates on traffic
load situations which are critical in terms of bandwidth utilization.  

The hybrid approach is based on the observation that an upper (lower) bound
of the true cell loss probability always yields correct LAC accept (reject)  decisions.

The inequalities  	 P
^

loss 
� Ploss 
 Ploss 
 Ploss 
 P
^

loss is then simply ap-
plied in this context. Note that the tractable lower bound  is parenthesized since no
efficient approximation is known at present, and that the true cell loss probability  is
represented by the exact fluid  flow cell loss probability. The hybrid cell loss proba-
bility estimate is defined by a single side inequality:

P
^

loss � �
P
^

loss (L,w) when P
^

loss��,

P
^

loss when P
^

loss
� (6)

 

where P
^

loss (L, w) denotes the MLP estimate for input link state vector L and MLP
weight vector w (comprising all network weights), and the � denotes the acceptable
cell loss probability (e.g.  �=10–9). According to definition (6), the MLP is only ac-
tivated when the tractable upper bound states that the performance is unacceptable.
The role of the MLP is simply to refine the upper bound estimate, by applying per-
formance knowledge derived by a more accurate/complex analytical model. 

The input link state vector L  is composed of the tractable upper bound esti-
mate, together with six statistics characterizing the superposed heterogeneous traf-
fic stream [2]. The statistics represent the class parameters  {Nj, pj, mj, ton(j)}j=1,...,c
in condensed, approximate form.  The most computational demanding statistic is
the dominant eigenvalue z

�
. See [2,10] for further details on the preprocessing.

The range of burst level traffic situations considered in the MLP training is
derived from a model of offered traffic at the connection level [5]. In the present
approach, the offered connection traffic is represented by a traffic intensity function
�  defined for connection class tuples (N, p, m, ton). In the context of connection
level traffic simulation, the class parameters can be seen as stochastic variables with



joint distribution function �(N, p, m, ton) if � is properly normalized. A traffic situa-
tion is simply a set of class tuples drawn from this distribution. Note that the upper
bound (3) and lower bound (5) should be consulted before the exact fluid flow mod-
el, since one of these bounds could have sufficient accuracy (w.r.t LAC).

5  Numerical Examples

In this section, numerical examples are used to evaluate the accuracy of the hybrid
LAC scheme and to compare it to other methods tractable in real time. The Inte-
grated Large Deviation (ILD)  [11], Integrated Chernoff Bound (ICB) [9], Equiva-
lent Capacity (EC) [3], and the tractable fluid flow upper bound (implemented by
the ILD method) are evaluated separately.

The traffic situations are drawn from independent, uniform and discrete class
parameters distributions, where N � {1, 2, ..., 25},  p � {2, 4, ..., 14} Mb/s,  
m� {1, 2, ..., 14} Mb/s and ton � {1, 2, ..., 25} msec.  Each traffic situation is
composed of three class tuple samples (c=3), and fulfill the criterion for statistical
multiplexing (N � m < C< N � p). The multiplex system is characterized by B=100
cells and C =135 Mb/s, and the LAC by �=10–9. Given the above constraints, a set of
23512 traffic situations have been generated. According to the exact fluid flow
model, 23.2% of these are accept– and 76.8% are reject–LAC situations. The fol-
lowing table shows the adequacy/applicability of the hybrid performance models.

Lower
Bound

Exact
Fluid Flow

Upper
Bound

Tractable
Upper Bound

 70.8 % 10.4 % 0.001 % 18.7 %

As shown, the lower bound is sufficient (w.r.t. LAC) for many traffic situations. An
MLP training set of 20000 samples and test set of 3512 samples are constructed
from the generated data. The target performance values are logarithmically trans-
formed to enable representation of tiny probabilities. A weighted MLP error func-
tion is used to enhance  errors near the LAC decision boundary �. 

The  LAC test set results are given as % bad accepts and % bad rejects, which
can be interpreted as measures of performance robustness and bandwidth efficiency
respectively. The hybrid result is a median over several backpropagation [4] train-
ing sessions. As shown in the following table, the hybrid approach yields fewest bad
rejects, and therefore has potential for high bandwidth efficiency. Even though it
makes some bad accepts, the true cell loss probability is always less than 10–8 in
these cases.

Hybrid Tractable UB ILD ICB EC

Bad Accepts 0.5% 0% 0% 0% 1.1%

Bad Rejects 1.0% 4.3% 13.0% 15.5% 9.1%

6  Summary

In this paper, we have presented and evaluated a hybrid scheme for link admission
control (LAC) in broadband ATM  networks. The suggested scheme comprises an



approximate analytical performance formula, combined with a supervised multi–
layer perceptron (MLP). The analytical formula is a computationally efficient vari-
ant of an upper bound of the fluid flow cell loss probability proposed in [8]. The
MLP is trained using refined performance knowledge, derived (off–line) from dif-
ferent fluid flow performance approximations. An efficient lower bound of the cell
loss probability is of interest in the presented scheme, but is part of future work.

The numerical results show that the lower bound of the fluid flow cell loss
probability  is adequate for many generated traffic situations. The results also show
that the hybrid scheme has potential to improve the bandwidth efficiency.
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