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Abstract
This paper presents an adaptive scheme for a sub-function in Asynchronous
Transfer Mode (ATM) network routing, called link allocation. The scheme
adapts the link allocation policy to the offered Poisson call traffic such that the
long-term revenue in maximized. It decomposes the link allocation task into
a set of link admission control (LAC) tasks, formulated as  semi-Markov Deci-
sion Problems (SMDPs). The LAC policies are directly adapted by reinforce-
ment learning. Simulations show that the direct adaptive SMDP scheme out-
performs static methods, which maximize the short-term revenue. It also
yields a long-term revenue comparable to an indirect adaptive SMDP method.

1  Introduction

Routing in public Asynchronous Transfer Mode (ATM) networks has two objec-
tives: maximizing the operator revenue and maintaining the network availability
for different call types. Adaptive routing techniques are efficient when the traffic
demand varies over time. The approach presented in [1], views the routing task as
an adaptive semi-Markov Decision Problem (SMDP). The method selects a route
from a set of candidate routes, the objective being to maximize the long-term reve-
nue. It uses an indirect algorithm, which adapts a model of the underlying con-
trolled Markov Process, and computes control policies based on the latest model.
In order to simplify the revenue analysis, the call traffic load and revenue genera-
tion on successive transmission links are assumed to be independent.



In this paper, we assume that two adjacent switches are interconnected by a set of
parallel transmission links. The adaptive routing problem is decomposed into a set
of adaptive link allocation problems,where the task is to select the link within a
link group that maximizes the long term revenue. An adaptive link allocation
scheme, based on a direct (model-free) SMDP approach is presented. A near-opti-
mal link allocation policy is found by solving a series of simple link admission
control (LAC) tasks, formulated as direct SMDPs. The link admission controllers
use reinforcement learning [2] [3], in form of the actor-critic method [4], to find
optimal state-dependent LAC policies. In particular, the controllers should detect
link states where blocking of narrow-band calls leads to higher long-term revenue.
A set of functions that measure the relative merit of accepting a call in a particular
link state, controls the link allocation after adaptation.

The experimental results show that the proposed scheme has comparable perfor-
mance with the indirect adaptive SMDP method, both in terms of long-term reve-
nue and in terms of adaptation rate.

2  The Link Allocation Problem
In the link allocation problem, a group of M links with capacities Ci [units/s],
i�I= { 1,..., M}, is offered calls from K different classes. Calls belonging to a class
j�J={ 1,..., K}  have the same bandwidth requirements bj  [units/s], and similar
arrival and holding time dynamics. As in [1], we assume that type-j calls arrive
according to a Poisson process with intensity �j  [s–1], and that the call holding time
is exponentially distributed with mean ���j  [s]. In this work, the parameter bj  is
given by the peak ATM cell transmission rate, since deterministic cell multiplex-
ing is assumed.

The task is to find a link allocation policy � that maps request states (j,n) � J × N
to allocation actions a�A, �: J × N� A, such that the long-term revenue is maxi-
mized. The set N contains all feasible link group states, and the set A contains the
possible allocation actions, I�{ REJECT} . The set of feasible link group states is
given by the Cartesian product of the sets of feasible link states Ni ,

Ni � �ni : nij � 0, j � J;	
j�J

nijbj � Ci�, i � I ,

where nij  is the number of type-j calls accepted on link i.

The network availability constraint (limited call blocking probabilities) is not con-
sidered in the present work. Moreover, we assume an uniform call charging policy,
which means that the long-term revenue is proportional to the cell throughput at
the call level.

3  An Adaptive Link Allocation Scheme
In order to speed up the adaptation process, the link allocation task is decomposed
into a set of link admission control (LAC) tasks with actions ai�Ai  =  { ACCEPT,



REJECT}, see Figure 1. The link admission controllers adapt to a constant-rate call
flow, during a number of periods. The call flows are kept unchanged during each
period, which ends when an optimal LAC policy has been found for each link.
Then, new call flows are determined for the following period, based on the perfor-
mance of the LAC policies determined during the previous period.

A load sharing link allocation policy with constant load sharing coefficients hij
maintains the LAC task during the policy adaptation period. That is, a type-j call
is offered to link i with probability hij  (Figure 1). The selected link admission con-
troller can then accept or reject the call. The load sharing coefficients used during
period p are determined by:

hij ,p �
� ij ,p�1

�
k�I

�kj,p�1

, i � I, j � J,

(1)

where �ij,p–1 denotes the measured rate of accepted type-j calls on link i during
period p–1. Hence, a link which has a relatively high admission rate will be offered
more calls during the next adaptation period. The adaptation stops when the new
coefficients {hij ,p} are sufficiently close to the old coefficients {hij ,p–1}.

Load
sharing

type-j
call

request

LAC 1

LAC M

a1�A1

a�A

h1j,p

hMj,p

LAC 2
h2j,p

a2�A2

aM�AM

Figure 1: Link allocation during adaptation.

In the course of LAC adaptation, each link admission controller i estimates merit
functions mACCEPT,i(j,ni), which measure the relative merit of accepting a type-j call
in link state ni . The accept merit functions control the link selection after the
adaptation phase.

When a type-j call request arrives, each link is checked to see if it has sufficient
free capacity to accept the call. Provided this is the case, the controller selects an
action ai�Ai  , with higher probability for the action which yields higher long-term
revenue (see section 4). The controller outputs the resulting action ai  along with
the accept merit value mACCEPT,i. The link allocator then selects the link with the
highest accept merit value (among the links that accept the call), see Figure 2. If
all ai = REJECT, the link allocator rejects the call.

In certain link states, called ”intelligent blocking” link states, rejecting calls of
some types yields a higher long term revenue than accepting them. They typically



occur when the link has a free link capacity that is equal to the size of a wide-band
call. By rejecting a narrow-band call request, the controller reserves bandwidth to
the wide-band class, and so increasing the long-term revenue. However, if many
narrow-band calls are accepted on the link, at least one of them is likely to depart
before the next wide-band call arrives. Hence, narrow-band calls can be accepted,
although the free capacity equals the size of a wide-band call.
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Figure 2: Link allocation after adaptation.

4  Reinforcement learning of the LAC policy

Within each link i, a link admission controller constructs a policy �i : Xi�Ai,
Ai  =  { ACCEPT, REJECT} . �i (xi) indicates what action to ai � Ai  to select at each
SMDP state xi � Xi . Xi  is defined by Xi  =  Ni�E �J, where the two possible types
of events, an arrival or a departure of a call, are the elements in E = { ARRIVAL,

DEPARTURE}.

The objective of the link admission controller of link i is to find a policy �i  which
maximizes the long-term revenue, expressed as the expected (infinite horizon) dis-
counted reward. This ”utility”  is denoted Vi�(�i ), for a SMDP state �i  � Xi :

Vi�(�i) � ��
�
	
�
�

t�0

e��tr i(xi(t), ai(t))dt


� (2)

where the reward ri(xi(t),ai(t)) is the continuous-time total cell transmission rate
on the link, xi(t) and ai(t) denote the SMDP state and action at time t, respectively,
and xi(0) = �i . This maximization is performed by a delayed reinforcement learn-
ing method, which is a modification of the actor-critic method [4], with its rede-
finition for SMDPs [3].

The actor-critic method solves the task using two separate function approximators
(Figure 3): an evaluation function Vi(x) which models Vi�(x) and a policy function
�i (x). In our modification, �i  is divided into two sub-policies: an arrival policy �ia,
which is adaptive, and a departure policy �id, which is deterministic. A sub-policy
selector chooses what sub-policy to employ, according to



� i(ni, e, j) � �� ia(ni, j), e� ARRIVAL

� id(ni, j), e� DEPARTURE, where
(3)

� ia(ni, j) � { ACCEPT, REJECT} , (4)

� id(ni, j) � ACCEPT . (5)

The motivation for Equation 5 is that the link admission controller must accept all
call departure requests.
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Figure 3: The architecture of the modified actor-critic method

�ia uses an adaptive merit function (Figure 3), which indicates the relative merits
mACCEPT,i and mREJECT,i, for accepting or rejecting a requested call, respectively. The
accept merits mACCEPT,i are also output to the link allocation algorithm. A stochastic
action selector chooses among the actions, with higher probability for actions with
higher merits. The probability of selecting an action ai  in state xi  is determined by
the action merits and the SMDP state, by choosing action ai(x) as in [4]:

ai(x) � arg max
u�Ai

�mu,i(xi) � eu
�

(6)

where mu,i(xi) is the merit of action u, and eu are independent random numbers,
drawn from an exponential distribution with mean 1/T(xi,ui). The ”temperature”
T(xi,ui) adjusts the randomness of action selection. After adaptation, T(xi,ui) is set
to zero for all (xi ,ui).

The discounted cumulative reward qi,xy received between two state transitions,
from a SMDP state x entered at time tx, to another SMDP state y entered at time
ty, is defined by



qi,xy � �
ty

tx

e�(tx�t)r i(t � tx)dt

(7)

The link admission controller learns from interacting with the link in repeated
trials. By definition of the evaluation function and (Equation 2), the desired evalu-
ation function Vi�(x) must satisfy

Vi�(x) � qi,xy � e�(tx�ty)Vi�(y) (8)

During learning, this may not be true. The difference between the two sides of the
equation is called the temporal difference (TD) error. This is used to update both
Vi(x), according to the TD(�) rule [2], and �i(x):

�Vi(x) � �V [qi,xy� e�(tx�ty)Vi(y) � Vi(x)] (9)

�mu,i(x) � �� [qi,xy� e�(tx�ty)Vi(y) � Vi(x)] (10)

where �V and ��  are ”learning rate” parameters, and u � Ai  is the action chosen
in state x.

It should be noted that although an effect of using a deterministic departure policy
is that the policy is not updated after call departures, the evaluation function is
updated, which leads to better estimates of Vi , resulting in faster and safer conver-
gence of the arrival policy. The non-zero probability of choosing and evaluating
actions with low merits (Equation 6), allows the link admission controller to
improve its policy.

In reinforcement learning, neural networks, for example multi-layer perceptrons,
are often used to approximate the evaluation and policy functions. This is benefi-
cial when the state space is too large to explore completely, since the neural net-
work allows generalization between states. Neural networks also allow incorpora-
tion of other environment parameters, providing the link admission controller with
information which may improve its performance, for example in cases where the
Poisson call model does not hold. However, in this work, lookup tables were used
for function approximation.

5  Results
The proposed adaptive link allocation scheme was tested on simulated Poisson call
traffic. Results for three other methods are presented for comparison: the indirect
adaptive SMDP method [1] and the static First Fit and Best Fit methods. The static
methods maximize the short-term revenue, using the following algorithms:

� First Fit: Search the links in a predefined order, and allocate the call
to the first link found with sufficient capacity.

� Best Fit: Choose the link with least, but sufficient, capacity.



The simulations were done for a link group of 3 links with capacities Ci = C = 24
[units/s] for all i. The link group was offered calls from two classes, characterized
by bandwidth requirements b1 = 1, b2 = 6 [units/s] and call holding times
1/�1 = 1/�2= 1 [s]. The arrival intensities �1 and �2 [s–1] were varied so that:

b1�1

C�1
�

b2�2

C�2
� 1.5

(11)

The temperature T(xi,u) of the actor/critic-method was set using prior knowledge
of the intelligent blocking states, introduced in section 3. In particular, intelligent
blocking should be possible for the narrow-band class, at link states where the free
capacity equals the size of one wide-band call, that is, for the link states
ni � {(0,3), (6,2), (12,1)}. In the corresponding SMDP states xi , different temper-
atures were used for accept and reject actions: T(xi,ACCEPT) = 0.4, and
T(xi,REJECT) = 0.3. For all other (xi,u) � Xi�Ai, the temperature T(xi,u) was set
to zero.
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Figure 4: Call level throughput versus arrival rate ratio for different methods.

Some prior knowledge was also needed to complement to the load-sharing policy
during adaptation. Experiments with the indirect SMDP scheme showed that one
link will always reject narrow-band calls. When ���� � �1/�2 � ����, this
occurred for two links, and when �1/�2 � 0.25, all narrow-band calls were
rejected. The direct scheme did not succeed in finding these complete blocking
links, so it had to be predefined in the simulations. A uniform load-sharing policy,
set according to the prior knowledge, was used during the initial adaptation period.



The actor/critic parameters were set to � = 0.74, �V = 0.1 and ��  = 0.2.  Also, the
merit values were initialized to favor ACCEPT actions for all xi � Xi .

The results for the indirect and direct SMDP schemes presented in the diagram in
Figure 4 were obtained after 4 adaptation periods, where each adaptation period
contained 1 000 and 15 000 simulated call events, for the indirect and direct
SMDP method, respectively. The throughput values in the diagram are based on
measurements on 300 000 calls events after policy convergence.

The diagram shows that the adaptive SMDP methods yields up to 7% higher long-
term revenue than the static methods. The diagram also shows that direct SMDP
scheme yields a performance similar to the indirect scheme’s.

6  Conclusion
This paper has presented an adaptive scheme, based on reinforcement learning,
for a sub-function in ATM network routing called link allocation. The scheme
adapts the link allocation policy to the offered Poisson call traffic such that the
long-term revenue in maximized.

The experimental results show that the proposed scheme outperforms the static
methods and yields a long-term revenue similar to the indirect adaptive SMDP
method [1]. The results also show that the adaptation rate of the reinforcement
scheme is comparable to the indirect method’s.

In our future work, we will consider link allocation of non-Poisson traffic, exploit-
ing the advantages of neural networks as function approximators.
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