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ABSTRACT

This paper presents an artificial neural network (ANN) approach to link admission control in
ATM communication networks. Three different ANN models for implementation of link quality
of service formulas, based on a heterogeneous fluid–flow queueing model, are presented. The
first model uses predefined peak rate parameters, the second model is based on a state   interpreta-
tion of aggregated link traffic, and the third model employs a form of statistical pre–processing of
the traffic parameters.It is argued that the ANN must implement a function which is invariant to
every permutation of the traffic descriptor arguments. This constraint is met by the third ANN
model and the experiments presented also suggests that the pre–processing performed is benifi-
cial for  generalization situations. 

1 INTRODUCTION

The Asynchronous Transfer Mode (ATM) is intended to be the basis for a future
Broadband Integrated Services Digital Network (B–ISDN). ATM  is a packet–oriented
switching and multiplexing technique designed to meet different bandwidth and Quality Of
Service (QOS) demands of B–ISDN services [1]. Today, much effort is put in research &
development of ATM technology,  especially within the area of congestion control. Call
admission control is a key part in preventive congestion control. Different analytical
approaches have been proposed to develop an effective admission control criterion. Although
accurate performance models of the link traffic exist, e.g. the fluid flow queueing model for
heterogeneous on/off traffic, they are too complex to be used in a real ATM network.
Instead, approximations are done to meet ATM response time constraints [2–4]. 

In this paper another approach is proposed. Instead of simplifying the performance model at
the price of inaccurate results, artificial neural networks (ANNs) are used to reproduce the
behaviour of an accurate performance model. An important remark about the performance
models is that they only consider the declared traffic profiles as opposed to [5] where neural
networks are used for call admission control based on actual traffic.  In [6] the latter method
is extended to solve integrated admission and link capacity control problems.



2. ATM NETWORK

2.1 ATM Switching

An ATM network combines the advantages of packet and circuit mode by switching
fixed sized labeled ”cells”  through virtual circuits. The ATM access nodes multiplex user
cells onto high capacity links for transmission to inner ATM nodes (switches). The ATM
switches perform cell routing and multiplexing according to the cell labels. Several  virtual
circuits usually share a single transmission link to improve network utilization. The ’by–
need’ allocation of bandwidth means that the network behaves as a system employing statis-
tical multiplexing.

2.2 Congestion Control

Conflicts may arise when cells belonging to different virtual circuits simultaneously
are switched to the same outlink. This holds even if the outlets are equipped with buffers to
queue competing cells, since the buffers may be momentarily saturated. Also, the queues
introduce cell delays and cell delay variations, which might be critical for some services. 

Consequently a virtual circuit’s QOS, e.g. cell loss ratio and cell delay, can only be
guaranteed in a probabilistic sense. In order to maintain the negotiated QOS it is necessary to
avoid congestion in the network. An efficient load control mechanism  is thus of prime
importance.  The approach taken in this paper is that of preventive load control, i.e. connec-
tion requests which might lead to congestion are not  accepted, and the data flow entering the
network is supervised by a flow enforcement function.

2.2.1 Admission Control

The virtual circuit/connection set–up phase contains two parts. First the route through
the network is  determined. Then a decision is made on each link whether or not to accept the
requested connection. The second part uses an algorithm called Admission Control (AC).
The purpose of AC is to map the parameters describing the aggregate connections on the link
and the parameters of the new connection into a QOS measure, and compare it with the
desired QOS. If the desired QOS can be fulfilled the connection is accepted.

In order to make correct decisions the AC must use an adequate link performance
model. Analytical models of different complexity have been developed [2]. All models are
based on queueing theory and use different degrees of approximation. The most accurate
approximation proposed in [2] is the fluid flow queueing model for heterogeneous on/off
traffic. But, as the connection set–up time is constrained, this rather complex model cannot
be used and further approximations must be made. Although such approximations are given,
e.g. binomial or Pascal multi server approximations, these performance models often overes-
timate the cell loss ratio.

2.3 Traffic Modelling

2.3.1 Source Models

The ATM network  is supposed to carry many different traffic types, including Con-
tinuous Bit Rate (CBR) and Variable Bit Rate (VBR) services. A versatile traffic source
model admitting analytical QOS calculations is therefore needed. The on/off source model
meets these requirements. In this model a source is either in an on–state, producing cells at a
constant generation rate f, or in a silent off–state. The duration of the on–state (off–state) is
expected to be exponentially distributed with mean ton (toff). 



2.3.2 Control Time Scales

ATM congestion control is considered to be performed in different time scales. These
are the cell level, the burst level and the connection level. The connection level is the upper-
most level, and considers variations in the number of established connections. The burst level
considers the variation in cell arrival rate due to the sources’ transitions between on and off–
states. At the cell level individual cells are considered and queueing theory is used to obtain
performance data.

2.4 Quality of Service (QOS)

Since B–ISDN will support a wide range of services the ATM network will face
many different QOS demands.  For example, low cell delay is more important for voice and
video traffic than for high–speed data. On the other hand, high–speed data may be very sen-
sitive to cell loss, while voice traffic can accept a moderate cell loss ratio. In this paper we
only consider the cell loss ratio. In order to meet the different demands of QOS the cell loss
ratio must be kept at the same order of magnitude as the bit–error–rate which implies a
restrictive cell loss ratio of 10–9. Thus, connection requests which lead to higher cell loss
ratios than 10–9 are rejected.

3 A LINK PERFORMANCE MODEL

If the buffer size is sufficiently large the discrete cell flow can be approximated with
a continuous cell flow leading to a fluid flow queueing model. The buffer is modelled as a
fluid reservoir with a hole in the bottom, where arrival cells are flowing into the buffer and
departure cells are flowing out of the buffer. A fluid flow model for a finite number of heter-
ogeneous on/off sources is formulated in [3].  Performance formulas such as the overall cell
loss ratio are given in the finite buffer case. 

 In this model, the heterogeneous sources are partitioned into c classes, where sources
in a given class are statistically identical. Class j, j = 1,...c,  are described by 

the number of sources: Nj 

the sources’ constant cell generation rate in the on–state: fj  

  
the sources’ average duration of the on(off) state: ton(j) (toff(j))

Sometimes the mean cell generation rate, mj, is used as a third parameter, eliminating one of
the source parameters above. This parameter is simply the peak generation rate fj multiplied
with the fraction of time the source is in the on state:

mj � fj

ton(j)
ton(j) � toff(j)

The collection of heterogeneous sources is described by



the source number vector: N = (N1,..., Nc )

the peak rate vector: f = (f1,..., fc)

the average on (off) duration vector: ton = (ton(1),...,ton(c)) 
                (toff = (toff(1),...,toff(c)))

One of the source parameter vectors can be replaced with the mean rate vector, 
m = (m1,..., mc). The maximum output rate from the buffer, denoted fout, and the buffer
capacity, denoted B, are also used in the derivations. 

The cell loss ratio can be shown to be a function of the parameters above, i.e. 

Ploss = Ploss (N, f, ton, toff , fout, B).

A vector k=(k1,k2,...,kc), 0 ≤ kj≤ Nj,  that describes a specific combination of on–sources is
also used in the derivations, which reference [3] presents in detail. To summarize, the cal-
culation of cell loss  is performed in three steps. First, the equilibrium buffer distribution,
Fk(x), for different combinations, k, of on–sources is determined. This distribution describes
the time independent probability that the sources are in state k and that the buffer content
does not exceed x. Then, the probability that the sources are in state k and that the buffer
content does exceed x, uk(x),  is obtained from the equation 

qk = Fk(x) + uk(x),

where qk is the overall probability that the sources are in state k. qk may be derived from the
fact that the number of on (off) sources in a given class are binomial distributed. The equa-
tion holds since the buffer content is either ≤ x or > x. 
Finally, the fraction of lost information to offered information, i.e. the cell loss ratio, is calcu-
lated as:

Ploss �

�
{ k | k �f �fout }

( k � f � fout) uk(B)

N �m

where the dot denotes scalar vector multiplication.

4 A NEURAL NETWORK APPROACH

4.1 Introduction

The speed – accuracy dilemma that faces the AC algorithm suggests an artificial neural net-
work (ANN) approach. Using parallel distributed processing [9–10], fast admission decisions



are possible without approximations of performance models. The idea is to use an ANN to
replicate the behaviour of a sufficiently accurate performance model, in our case the hetero-
geneous fluid flow model. Since the admission control is based on an accurate performance
model, a higher number of accepted connections is possible, resulting in a more economical
ATM network utilization.

4.2  ANN Modelling

4.2.1 Symmetry Constraint

 Consider a situation where n–1 connections statistically share an output link and that
there is a request for an n’th connection.  Let xk = (fk, mk, ton(k)), denote a parameter vector
representing connection k (k=1, ..., n). The parameters fk, mk and ton(k) denotes the peak rate,
mean rate and on duration as before. The aggregated connection on the link, with connection
n accepted, is described by a individual parameter vector Xn = (x1, ..., xn). Thus, the ANN
should perform the mappings

Xn � Ploss � {accept, reject},

where the final mapping is based on a comparison with the restrictive cell loss ratio 10–9.

Now, assume that the n connections can be partitioned into c different classes with statisti-
cally identical sources. Let Nj,k denote the number of sources in class j (j=1, ..., c) after con-
nection k is accepted. Similarly, let yj,k = (Nj,k, fj, mj, ton(j)) denote a vector representing source
class j after connection k is accepted. With this notation, the  aggregated connection is
described by a class parameter vector Yn = ( y1,n, ..., yc,n), and the ANN task becomes  

Yn � Ploss � {accept, reject}.

A first attempt  would be to use a multi layer perceptron (MLP) with 3n input nodes in the
first case, and 4c input nodes in the second case.  This approach suffers from the fact that the
network output should be the same for every permutation of the elements of Xn  (Yn).  In
other words the MLP must learn n!  (c!) different versions of Xn  (Yn) which soon gets
unmanageable. This constraint, which we call the symmetry constraint, has been identified as
a key issue in our ANN approach.

4.2.2 Model A: Predefined Peak Rates

The first ANN model is based on a finite number of predefined peak rates. If we use
fixed peak rates the class parameter vector can be reduced to z j,k = (Nj,k, mj, ton(j)). Denoting
the resulting aggregated vector by Zn = ( z1,n, ..., zc,n), the ANN’s task becomes 

Zn � Ploss � {accept, reject}.

Now, since the peak rates are fixed, we can use an MLP with 3c inlayer nodes and associate
three nodes to each class. Thus, the problem of symmetry is avoided by using class–dedi-
cated input node triplets.  

Since it seems difficult to divide the  B–ISDN services into a finite number of fixed
traffic classes, i.e. classes with fixed peak rates, mean rates and on durations,  a versatile



ANN model must have some generalization properties. The ANN model described above can
be used to generalize in the parameters Nj, mj and ton(j) but not in the parameter fj. The peak
rate is chosen as the parameter with predefined values since the services’ mean rates and on
durations seem difficult to predict. Also, if we want to change the set of predefined peak
rates, e.g. because a service with unknown peak rate is to be carried by the ATM network, it
is always possible to re–train the MLP off–line, and then use the extended MLP in the admis-
sion control procedure.

4.2.3 Model B: A State Interpretation of Aggregated Traffic

In the second ANN model a state vector Sk is used to describe the k connections on
the link. The state vector should, besides from being an accurate description of the traffic sit-
uation, also contain information about the cell loss ratio. As a first approximation of the state
vector we have chosen the tail buffer distribution function,  u(x), which express the probabil-
ity that an arriving cell finds a buffer level that is higher than x: 

u(x) = Σk uk(x).

uk(x) is, as described in section 3, the probability that the sources are in state k and that the
buffer content  exceed x. The state vector is obtained by evaluating u(x) for different buffer
levels. Figure 1 shows three example distributions.

Figure 1. Buffer distribution functions for three different traffic situations. Note that
  the probability to find the buffer occupied to a certain level increases with 
  the number of connections (N1).

Let Sn–1 denote a state vector describing the n–1 connections already sharing the link and let
xn describe the new connection. The ANN under consideration maps the state vector Sn–1 and
the parameter vector xn to a new state Sn: 

(Sn�1, xn) � Sn � Ploss � {accept, reject}.



Note that instead of the symmetry constraint stated above, we face the constraint  that the
state Sn must be independent of the order of the connection requests. Since the n connection
requests can appear in any order, n! different sequences are possible. For example, consider
the connection requests xa and xb. The sequence constraint means that the ANN output  for
(Sa, xb) and (Sb, xa) must be the same.

4.2.4 Model C: Higher–Order Inputs

In the third ANN model the symmetry constraint is removed by using an MLP with
higher–order inputs which are determined from symmetry considerations. The symmetry
constraint means that the ANN must implement a function, g=g(x1,...,xn), which is invariant
to every permutation of the arguments xk (k=1, ..., n). That is, g’s dependency of the parame-
ters fk, mk and  ton(k) of xk must be the same for every k (property 1). Similarly, g’s depen-
dency of the parameter variations and covariations must be the same for every k (property 2).
This must also hold for the parameter covariations between different k (property 3). To state
this more formally we introduce the second order Taylor expansion of g at the origin:

g(x1, ..., xn) = g(0) + Σi (�xi)T g(0) xi  + 1/2 Σi Σj xi  (�xi)T �xj g(0) xj
T,

where, using the notation xk=(αk, βk, γk), �xi = (∂/∂αi , ∂/∂βi , ∂/∂γi) and

( xi)
Τ�xj ��

�

	




∂�∂α i∂α j

∂�∂βi∂α j

∂�∂γi∂α j

∂�∂α i∂βj

∂�∂βi∂βj

∂�∂γi∂βj

∂�∂α i∂γj

∂�∂βi∂γj

∂�∂ i∂γj

�
�

�

.

The symmetry constraint  can now be stated as 

�xi g(0) = D,
(�xi)T �xi g(0) = H
(�xi)T �xj g(0) = G                     i,j = 1, ...., n, and j ≠ i.

Notice that D is a constant vector corresponding to property 1. H and G are constant matrices
corresponding to property 2 and 3 respectively. Substituting the constraint expressions and
xk=(αk, βk, γk) into the Taylor expansion yields

g(x1, ..., xn) = g(0) + D Σi xi +1/2 [ Σi xi  H xi 
T  + Σi Σj ≠ i xi  G  xj

T ]   = 
= g(0) + d1Σi αi +  d2Σi βi + d3Σiγi +

1/2[ h11Σi(αi)2 + h22Σi(βi)2 + h33Σi(γi)2 +
h12Σiαiβi + h13Σiαiγi + h23Σiβiγi  + 

g11ΣiΣj ≠ i αiα  j + g22ΣiΣj ≠ i βiβj + g33ΣiΣj ≠ i γiγj + 
g12ΣiΣj ≠ i αiβj + g13ΣiΣj ≠ i αiγj  + g23ΣiΣj ≠ i βiγj ].

di denotes an element of vector D, hij and  gij denotes elements of the matrices H and G. In
the last equality the (Hessian) properties  hij = hji and gij =  gji have been used.
The number of summations can be reduced by noticing

g(x1, ..., xn) = g(0) + d1Σi αi +  d2Σi βi + d3Σiγi +
1/2[ (h11 – g11)Σi(αi)2 + (h22 – g22)Σi(βi)2 + (h33 – g33)Σi(γi)2 +



(h12 – g12)Σiαiβi + (h13 – g13)Σiαiγi + (h23 – g23)Σiβiγi  + 

g11(Σiαi)2 + g22(Σiβi)2  + g33(Σiγi)2 + 
g12(Σiαi)(Σiβi) + g13(Σiαi)(Σiγi) + g23(Σiβi)(Σiγi)].

The idea is to use the sums and product of sums (henceforth called components) described
above as higher order inputs to an MLP. That is, instead of training the MLP to recognize
every permutation of the parameter vectors, the symmetry problem is solved by pre–proces-
sing of parameter data. Let Tj,n denote component number j (j=1,...,15) when n connections
are accepted, i.e.  T1,n = Σαi, T2,n = Σβi, ..., T15,n = (Σβi)(Σγi), and let Tn denote the aggregated
vector Tn = (T1,n,T2,n, ...,T15,n).  Using this notation the ANN task becomes 

Tn � Ploss � {accept, reject}.

An analysis of the 15 components shows that these may be found in the expressions for sam-
ple mean, variance and covariance. The components of type Σαi is simply the nominator in
the expression for the arithmetic mean of αi

m� �

�i
n

The components of type Σ(αi)2 and (Σαi)2 may be found in the sample variance expression
for αi since

 v� �
1

n � 1
[�(�i)

2
�

1
n (� �i)

2].

Similarly, the components of type Σαiβi and (Σαi)(Σβi) may be found in the sample covaria-
nce expression for αi and βi,

c�� �
1

n � 1
[��i�i �

1
n (��i)(� �i)].

Note that if we use the means (mα, mβ, mγ), variances (vα, vβ, vγ), covariances (cαβ,  cαγ,  cβγ)
and the number of connections n as inputs we a can not guarantee equal classification quality
since this data contains slightly less information than the original components. That is, the
statistical data only permits 10 degrees of freedom compared to 15 for the Taylor compo-
nents.

4.3 Experiments

4.3.1 Parameter Constraints

The experiments described below are based on cell loss calculations using the hetero-
geneous fluid flow model. A program written by S. Jacobsen [2–3] is used for generation of
cell loss data. In this program, only three source classes can be used simultaneously, and the
number of sources in these classes is restricted by (N1+1)(N2+1)(N3+1) ≤ 750 due to memory
limitations. Since the performance model only considers load situations where the mean
offered traffic is less than the output link capacity the number of sources and mean rates are
restricted by N1m1 + N2m2 + N3m3 < fout, where of course mj ≤ fj. The fact that no cell loss is
possible when the sum of the peak rates is less than the output link capacity, i.e. N1f1+ N2f2+
N3f3 <  fout, has been used to reduce the number of program runs. Furthermore, the peak rates



fj should be less than 10% of the output link capacity in order to gain from statistical multi-
plexing [7–8].

4.3.2 Generation of Sample Sets

Consider the crucial task of selecting parameter combinations for cell loss evaluation.
The goal is to determine a parameter distribution which enables correct ANN classifications.
In this context it may be pointed out that the parameters  fj, mj and ton(j) have decreasing
importance, i.e. the parameter density in the peak rate dimension should be higher than in the
mean rate dimension etc. 

The performed ANN experiments are based on sample sets containing pairs of class
parameter vectors Yk = ( y1,k, y 2,k, y3,k) and cell loss values Ploss,k. The vectors Yk contain
unique N1, N2 and N3 combinations for fixed choices of fj, mj and ton(j) (j=1,2,3). Seven sam-
ple sets {(Yk, Ploss,k)} with different source class characteristics have been generated, see
table 1. The peak rate parameters are the same in all sets while the mean rate and on duration
parameters differ. The number of connections have been varied in steps of three for  class 1
and 2 and in steps of two for class 3. Future experiments will consider the relative impor-
tance of the parameters more extensively, i.e. more samples with varying peak rates will be
generated.  

In the cell loss calculations, a buffer capacity B of 100 cells is used. This choice gives
sufficient ATM network efficiency according to [2]. The output link capacity  fout is chosen to
135 Mbit/s (instead of 155 Mbit/s). This is motivated by the reduced transfer efficiency
induced by cell overhead and frame synchronization cells [2].

Set# #Samples f1 m1 ton(1) f2 m2 ton(2) f3 m3 ton(3)

1 796 2 1 25 6 2 8 12 3 4

2 553 2 1 12 6 2 8 12 3 4

3 497 2 1 25 6 2 4 12 3 4

4 362 2 1 25 6 2 8 12 6 4

5 267 2 1 25 6 2 8 12 8 4

6 193 2 1 25 6 4 8 12 8 4

7 286 2 1 25 6 4 8 12 6 8

Table 1. Traffic profiles for generated sample sets. The peak rate  fj and the mean 
            rate mj are given in Mbit/s and the on duration ton(j) in msec.

4.3.3 Model A

The model A which is based on a set of predefined peak rates has been examined for
6 different combinations of training and test sets, see table 2. Normalized versions of the
sample sets were used. The input vector elements were normalized to the interval [0,1] and
the cell loss values were logarithmized and mapped to the interval [–1,1]. 



Test
no.

Learned
Sets

Test
Set

1 1 2

2 1 3

3 1,5 4

4 1,4 5

5 1,4 7

6 1,4,6 7

                          Table 2. Composition of training and test sets.
         

Two MLPs with 2 respectively 5 hidden nodes were used in the experiments which  table 3
summarizes. The table shows that the MLP with 5 hidden nodes performs better than the
MLP with 2 hidden nodes when the generalization task is more difficult, e.g. for test no. 4
and 5. Both MLPs have very good results for test no. 3, which is natural since the test classi-
fications only involves interpolations. 

Test
no.

2 Hidden Nodes  
  % correct (��

   Train Test

5 Hidden Nodes  
  % correct (��

   Train Test

1 94.8 (2.6) 93.7 (3.7) 96.5 (2.3) 93.9 (3.5)

2 96.5 (2.6) 91.8 (5.4) 97.1 (1.3) 92.6 (3.1)

3 95.2 (1.8) 96.8 (1.6) 94.6 (2.0) 95.2 (2.4)

4 95.0 (3.1) 90.8 (6.4) 95.6 (1.9) 95.4 (1.9)

5 96.6 (1.5) 78.3 (7.6) 96.6 (2.1) 85.1 (7.0)

6 94.4 (3.0) 84.8 (7.5) 96.2 (2.1) 84.3 (8.0)

Table 3. Experimental results (% correctly classified patters, 10 times average) after 
100 epochs of training for model A. The figures within parentheses are standard devi–
ations (���

4.3.4 Model B

Only a small amount of experiments have been performed with the model B based on a state
interpretation of aggregated traffic. This is because the choice of the buffer distribution func-
tion as the state vector was found to give numerical problems. Since the model uses succes-
sive mappings (Sk�1, xk) � Sk a state vector must be accurate even for light load situations.
Unfortunately the buffer distribution function is poor at describing very light load situations
since the probability to find cells in the buffer is very low. Furthermore, even if a very high
accuracy is used in the generation of buffer distribution data, a neural network will have dif-
ficulties to implement such an accuracy. This is an important remark since one false state
vector is sufficient to reduce the classification quality.

The same program that was used for the cell loss calculations has been used in the
generation of buffer distribution data. A state vector was estimated by evaluating this func-
tion at 9 different buffer levels. These samples were chosen to best represent the function, i.e.



more samples were taken for low buffer levels. The logarithm of the values were taken to
concentrate the sample distribution and the training set was normalized, producing state vec-
tor elements in the interval [0,1]. Then, an MLP with 5 hidden nodes were trained to
associate (Sk–1, xk)  combinations to state vectors Sk. The experiments confirmed the numeri-
cal difficulties described above. Furthermore, the wide scattering of buffer distribution data
resulted in poor training performance for some examples.

4.3.5 Model C

The model C which uses pre–processing based on symmetry considerations has been
examined using the same data as for model A. Again, two MLPs with 2 respectively 5 hidden
nodes were used in the experiments, which table 4 summarizes. A comparison of the results
of model A & C shows that model C has similar properties for the first three tests. For the
last two tests model C performs better than model A, the result is about 10% higher for
model C. As Table 1 shows, the traffic parameters for these tests are more difficult,  i.e. the
model A network has to extrapolate for some of the test samples. Thus, it seems that the
linearisation performed by the pre–processing is beneficial for extrapolation situations.   

Test
no.

2 Hidden Nodes  
  % correct (��

   Train Test

5 Hidden Nodes  
  % correct (��

   Train Test

1 97.1 (1.4) 88.7 (2.4) 97.7 (1.4) 93.5 (1.7)

2 96.3 (1.6) 90.6 (3.5) 97.9 (1.4) 92.7 (1.8)

3 96.1 (2.3) 96.9 (2.2) 96.4 (2.5) 97.2 (2.1)

4 96.3 (1.4) 95.5 (1.4) 97.6 (1.8) 96.2 (1.6)

5 97.3 (1.7) 96.4 (0.5) 97.6 (0.8) 96.8 (0.4)

6 97.0 (1.4) 97.0 (1.0) 97.2 (1.4) 97.4 (0.8)

Table 4. Experimental results (% correctly classified patters, 10 times average) after 
100 epochs of training for model C. The figures within parentheses are standard 
deviations (���

5 CONCLUSION

This paper has presented different artificial neural networks models for admission
control in ATM networks. It is pointed out that the admission criteria should be based on an
accurate link performance model since this allows higher utilization of the ATM network.
Therefore a neural network is proposed to reproduce accurate cell loss calculations per-
formed by the heterogeneous fluid flow model. Three different ANN models are exploited;
the first model uses predefined peak rate parameters, the second model is based on a state
interpretation of aggregated link traffic, and the third model employs a form of statistical
pre–processing of the traffic parameters.
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