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Abstract: This paper describes a statistical preprocessing technique for a supervised neural net-
work used for quality of service (QOS) estimation in an Asynchronous Transfer Mode (ATM)
communication network. The preprocessing is based on standard queueing theory results and
yields a good description of aggregate link traffic. The link statistics are computationally easy to
obtain and comply with ATM real time requirements. The neural network target QOS is derived
by an accurate link performance model to allow for a high utilization of network resources. Exper-
imental results verify the feature detecting ability of the link statistics, and corresponding results
for some conventional QOS approximation methods examplify the approximations’ degradation
effect on resource utilization.

1. INTRODUCTION

The Asynchronous Transfer Mode (ATM) is the transport mode recommended for the
Broadband Integrated Services Digital Network (B–ISDN) scheduled for introduction in the
mid–1990’s. ATM is considered capable of supporting virtually all communication services
expected in the future, including multimedia services, by asynchronous multiplexing of fixed
sized packets called ”cells” [1].  However, traffic control is needed to maintain the quality of
service (QOS) of network connections. Connection admission control is effective in the con-
text of preventive traffic control. 

The admission control decision to accept or reject connection requests is based on an es-
timation of the selected path’s QOS, given the characteristics of the connections already shar-
ing the path, and the characteristics of the new connection. Although very accurate analytical
traffic performance models, based on queueing theory have been proposed, e.g. the fluid
flow model for heterogeneous traffic [2], they are too complex to be used in a real ATM net-
work. This is especially true if many connections of different types share the links.  

Traditionally, approximations are done by superposing the connections into a single or a
few traffic sources [3], or e.g. by a direct approximation of the fluid flow QOS formula [4].
The approximations enable real time admission control, but at the price of reduced network
throughput.  

In this paper another approach is proposed. Instead of introducing approximations di-
rectly in the QOS performance model, neural networks are used to implement an accurate
performance model. A multi layer perceptron is trained to recognize the nonlinear relation-
ship between a link state vector and a QOS measure calculated by the heterogeneous fluid
flow model. The link state vector contains statistical measures of the requested aggregate link
traffic and is computationally easy to obtain. The link state vector may be based on user–pro-
vided traffic descriptors or on traffic measurements that reflect actual user characteristics.

Some traffic control methods for ATM networks based on neural networks have already
been proposed. For example, in [5] a neural network is used to adaptively learn the relation
between offered traffic characteristics and resulting QOS, which both are obtained from actu-
al traffic characteristics.

2. ATM TRAFFIC CONTROL

The nature of ATM makes traffic control a challenging task.  In ATM, user cells are asyn-
chronously multiplexed onto high capacity links according to actual communication needs.



Connections allocate network resources only virtually, and statistical gain is possible when
users are bursty, i.e. alternate between busy and silent states. At the switching nodes, output
buffers are needed to resolve switching conflicts which arise when several cells simulta-
neously are switched to the same destination link. However, when too many cells arrive at
the same time, or if switching conflicts arise repeatedly, the buffer will saturate and subse-
quent cells will have to be dropped. The probability of cell loss is therefore an important
QOS measure in an ATM network. The buffer queues also affect the cell delay and cell delay
variation, which are important QOS measures for real time traffic.

The main objective for traffic control is to allow for a high utilization of network re-
sources, while sustaining an acceptable QOS level. The control methods are constrained by
the high real time requirements of broadband networks and the fact that retransmissions are
expensive since a large amount of traffic can be in transit during a propagation delay.

Traffic control is divided into reactive and preventive traffic control. In a broadband net-
work, preventive traffic control is believed to be most important. Preventive traffic control
consists of two parts: connection admission control and enforcement of user traffic. The traf-
fic enforcement is necessary to prevent users from violating the agreed traffic behaviour.

3.  CONNECTION ADMISSION CONTROL

Connection admission control procedures decide whether a new connection request should
be accepted or rejected. At connection set up, a route through the network is selected. Then,
the QOS of each affected link is estimated, taking the effect of the new connection into ac-
count. The connection request is accepted if each link can offer sufficient QOS to all connec-
tions. The QOS measure is calculated from traffic descriptors provided by the users, or ob-
tained from traffic measurements.

Users are often described as two state on/off sources. In the on/off source model, a user
alternates between a busy on–state and a silent off–state. In the busy state, users produce
cells at a constant characteristic cell generation rate. For bursty traffic, e.g. data and voice
traffic, the duration of the busy and silent periods are often modeled as exponentially distrib-
uted, and a continuous time queueing model is used for performance evaluation. The fluid
flow queueing model belongs to this category.

4. THE FLUID FLOW PERFORMANCE MODEL

If the output–buffer size is sufficiently large, it is possible to model the discrete cell flow as a
continuous fluid flow. The fluid flow approximation neglects the cell scale fluctuations and
considers buffer saturation solely due to fluctuations in the burst scale. A continuous time
Markov chain models the flow rate into the buffer, and the maximum service rate is given by
the link capacity.

A fluid flow model for a finite number of heterogeneous on/off sources has been pro-
posed in the literature [2]. In this model, user sources are partitioned into c classes of statisti-
cally identical sources. Each class j is described by four parameters: the number of sources in
the class Nj, the constant cell generation rate or peak rate pj, and the average duration time of
the busy and silent periods, ton(j) and toff(j), which characterize the exponential distributions.
The buffer capacity B, and the link capacity C, are also included in the model.

 An estimation of the expected cell loss probability is carried out by calculating the buff-
er equilibrium probability distribution. The solution is obtained by solving a set of first order
differential equations, by a standard eigenvalue and eigenvector approach. Each possible
busy–source configuration has its own state equation, and the solution complexity therefore
increases geometrically with the number of sources, making a direct numerical real time im-
plementation intractable.



5. STATISTICAL PREPROCESSING FOR NEURAL QOS ESTIMATION

Neural networks have several properties valuable in ATM traffic control. The parallelism en-
ables fast control actions, the adaptability offers flexibility, and error tolerance provides ro-
bustness [9–11]. QOS estimation for admission control is particularly suitable for neural net-
works, and may result in higher network throughput than conventional methods. The
approach taken in this paper is simply to reproduce QOS estimations (in terms of the proba-
bility of cell loss) of the fluid flow model, by using a multi layer perceptron (MLP) as func-
tion approximator. 

One of the more crucial parts of the neural network approach is the selection of link state
statistics to be used as neural network inputs. The statistics should contain sufficient informa-
tion with respect to the target performance model to enable a functional relationship. In a
previous paper [7], knowledge of the desired mapping (permutational symmetry with respect
to the traffic descriptor sets) were used in a second order Taylor expansion to define 15 sym-
metry–invariant statistics. Here, an MLP input vector of lower dimension is defined, based
on knowledge of the buffer queueing system.

 In [3], six statistics for characterizing an aggregate connection of heterogeneous on/off
sources are presented. All statistics but one are of direct incremental nature, which is impor-
tant since connection requests arrive sequentially. Three statistics are used to describe the sta-
tionary distribution of the arrival rate: the mean arrival rate M, the variance of the arrival rate
V, and the third moment of the arrival rate �3. The impact of the k’th connection is incremen-
tally calculated as   

Mk = Mk–1 + mk (1)
Vk = Vk–1 + mk (pk  – mk) (2)
�3(k) = �3(k–1) + mk (pk  – mk) (pk  – 2mk) (3)

where mk  is the mean cell arrival rate of the k’th connection, defined as the peak rate multi-
plied with the fraction of time the user is busy: mk = pk ton(k) / (ton(k) +  toff(k)). Two parameters
express information about the correlation structure: the slope of the autocovariance function
of the arrival rate at the origin C0, and the asymptotic variance of the arrival rate v

�
  [3]. The

incremental formulas are

C0(k) = C0(k–1) + mk pk / ton(k) (4)
v
�(k) = v

�(k–1) + 2 (mk  / pk ) (pk  – mk)2 ton(k) (5)
 
One parameter that reflects the overall behaviour of the queueing system is obtained from the
fluid flow model. The largest negative eigenvalue z0  of the eigenvalue–egienvector solution
is known to characterize the exponential decay of the buffer probability distribution. It is ob-
tained by solving the nonlinear equation [2, 3], e.g. by Newtons method: 

       
�c

j�1

Nj (1�ton(j) � 1�toff(j)) � z0(k) (�
c

j�1

Nj pj � 2C) �

�c

j�1

Nj (z0(k) pj � 1�ton(j) � 1�toff(j))
2 � 4�(ton(j) toff(j))� (6)

The solution complexity is dependent on the number of classes c and the number of iterations
to find the root z0(k), which initially should be set to the previous value z0(k–1). The six statis-
tics define an input state vector Sk = (Mk, Vk � �3(k), C0(k), v�(k), z0(k)) for the neural network.

The present approach consists of two parts: 1) preprocessing to obtain the vector Sk, and
2) estimating the cell loss probability with a supervised MLP. The complexity of the target



fluid flow model admittedly restricts the flexibility of the approach, in the sense that
introduction of new ATM source types requires off–line training. However, by initially train-
ing the neural network on a wide range of traffic situations, the need for off–line training is
diminished.

6. EXPERIMENTS

Some example experiments have been performed to study the feasibility of the approach. The
traffic situations selected in the experiments are restricted with respect to the number of si-
multaneous source classes/types, and to the range of traffic source characteristics. The traffic
situations are chosen randomly, with the restrictions c=3, Nj � {1, 2, ..., 25}, 
pj � {2, 4, ..., 14} Mbit/s, mj� {1, 2, ..., 14} Mbit/s and ton(j) � {1, 2, ..., 25} msec. 
Furthermore, only traffic situations for which the fluid flow model are needed have been
considered, i.e. when the mean arrival rate is less than the link capacity �� Nj mj < C), and
the maximum arrival rate is higher than the link capacity �� Nj pj > C). 

In the cell loss calculations, a realistic buffer capacity B of 100 cells and link capacity C
of 135 Mbit/s are used. The cell loss values are logarithmically transformed to enhance the
estimation near the acceptable cell loss level of 10–9. The largest negative eigenvalue z0 is
transformed by log(–z0), which improves the feature detecting ability studied in the experi-
ments. After standard normalization procedures, a training set of 20 000 samples and a test
set of 3 512 samples are obtained.

7. RESULTS

Results characterizing the feature detecting ability of the 6 queueing system statistics, and
corresponding results for the 15 Taylor expansion statistics [7], are presented in table 1. The
results are given as averages over 10 different standard backpropagation [11] training ses-
sions. For comparison, training set results for some conventional QOS approximation tech-
niques [4, 6, 8] are presented in table 2. Of these, only the ”Equivalent capacity” method has
a low computational complexity, suitable for real time implementation.

In the tables, results are given as % bad decisions, defined as the percentage of traffic
situations which yields a cell loss value on the wrong side of 10–9, as compared to the target
fluid flow model. In table 2, the % bad decision figures are further divided into % bad ac-
cepts and % bad rejects, which characterize the degradation effect on user QOS and network
throughput. 

  %Bad decisions (sdev)
Table 1. Neural network preprocessing Training set Test set

           Queueing system statistics  3.5 (0.4) 4.0 (0.4)
           Taylor expansion statistics 5.2 (0.6) 5.2 (0.7)

     
Table 2. Conventional methods %Bad decisions %Bad accepts %Bad rejects

 Equivalent capacity 12.2 0.6 11.6
Virtual cell loss 15.1 0 15.1
Binomial multi server 23.3 0 23.3

The results in table 1 show that the queueing system statistics are advantageous, and that
no significant degradation is obtained for the test set. A comparison with table 2 shows that
the conventional methods yields a significantly higher amount of bad decisions. However,
the conventional methods are ”safe” in the sense that the bad decisions mainly reduce the
network throughput. The incorporation of the bad accept/reject measures in the neural net-
work error function is subject to current research.



8. CONCLUSION

In this paper, we have presented and evaluated a statistical preprocessing technique for a su-
pervised neural network used for accurate QOS estimation in a broadband ATM network.
The QOS estimation provides a basis for connection admission control, an important tool in
preventive traffic control. A set of link statistics are used to characterize the aggregate con-
nection, which is assumed to consist of on/off sources. The statistics are derived from knowl-
edge of the buffer queueing system [3], and are computationally easy to obtain. One statistic
has a computational complexity dependent on the number of traffic classes and constraints
the approach somewhat.  

An accurate, but complex link performance model (which allows for a high utilization of
network resources) is used to derive the neural network target QOS. A wide range of prede-
fined traffic situations are assumed to be learned before the neural network is introduced in
on–line operation, since target QOS values are unattainable in real time.  

Experimental results show that the queueing system statistics have good feature detect-
ing properties. Results for some conventional QOS estimation methods are also presented,
and examplify the fact that performance model approximations may reduce network through-
put.
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