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Abstract

In this paper we study the call admission control (CAC) problem for a single link in

multi-service loss networks. Each call is described by a reward parameter representing

the expected reward for carrying this call. The control objective is to maximize the

reward from carried calls.The behavior of the link is modeled as a Markov Decision

Process (MDP). The standard link MDP model assumes a Poisson call arrival process

and exponentially distributed call holding times. However, some services on the Internet,

such as the World Wide Web service, produce self-similar call arrival processes with

heavy-tailed holding time distributions. In this paper, we propose an extended link MDP

model for self-similar call arrivals and exponential holding time distributions. Numerical

results show that the reward increase due to admission of a call (denoted link net-gain)

depends on the time offset between the latest arrival and the latest departure.

1 INTRODUCTION

We consider the problem of Call Admission Control (CAC) on a single link in multi-service

loss networks such as ATM and STM networks, and IP networks, provided they are extended

with resource reservation capabilities. The objective is to maximize the revenue from carried
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calls, while meeting constraints on the Quality of Service (QoS) and Grade of Service (GoS)

on the packet and call level, respectively. First, the network should determine the set of

feasible paths between the source and destination which offers sufficient QoS to the new and

existing calls in terms of delay, jitter and data loss. Second, the network should chose to reject

the call or to accept it on some path among the set of feasible paths. This choice should be

consistent with GoS constraints, in terms of call blocking probabilities and call set up delays,

as well as maximizing the average revenue rate for the operator.

The required bandwidth is represented by the call’s peak bandwidth in case of determin-

istic multiplexing, and by the call’s equivalent bandwidth in case of statistical multiplexing.

Note that the equivalent bandwidth can be different on different links along the call’s path.

In particular, the equivalent bandwidth depends on the traffic mix on the link, buffer and link

capacity as well as the target buffer overflow probability.

Modern CAC and routing mechanisms are state-dependent rather than static, which means

that the decision to reject the request for a new call, or to accept it on a particular path

depends on the current occupancy of the network. A state-dependent CAC and routing policy

is a mapping, for every call class, from a network state space to a set of possible CAC and

routing decisions, see Figure 1. State-dependent mechanisms offer advantages both in terms

of achievable revenue and ability to control the QoS and GoS.

Call arrival  

Call departure

CAC and

routing policy

CAC and routing decision

Network

Network state

Figure 1: State-dependent CAC and routing

This paper deals with a particular form of state-dependent CAC on the link level, where

the behavior of the link is formulated as Markov Decision Process (MDP) [3, 16] . A MDP is

a controlled Markov process, where the set of state transitions from the current Markov state
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to other Markov states depends on the decision or action taken by the controller in the current

state. In the MDP framework, each call is described by a expected reward parameter and the

objective is to maximize the reward from carried calls.

Optimal state-dependent CAC and routing policies can be computed using an exact net-

work MDP framework. However, the cardinality of the network state and policy spaces in the

exact framework can be very large even for moderate-size networks. Therefore, a necessary

modelling simplification is to decompose the network into a set of links assumed to have

independent traffic and reward processes, respectively. When formulating the MDP frame-

work for each link, calls with the same bandwidth requirement are aggregated into a common

category, which corresponds to one dimension in the link state vector.

The standard link MDP model assumes Poisson call arrival processes and exponentially

distributed call holding times. The Poisson call arrival model is accurate for session arrivals

for many service types, such as telephony, World Wide Web (WWW), FTP and TELNET.

However, for TCP connections invoked within the WWW sessions, the Poisson model is an

inadequate model. Based on real measurements of the TCP connection arrival process within

WWW sessions, Anja Feldmann has proposed a certain non-Poisson renewal call arrival

process model [6, 7, 8]. This process has inter-arrival times that follow a Weibull distribution

in contrast to the Poisson process which has exponentially distributed inter-arrival times.

We follow the convention by Anja Feldmann and refer to this new arrival process as self-

similar, since it exhibits structural similarities across a wide range of time scales. The Weibull

distribution is a generalized exponential distribution. For the range of distribution parameters

plausible for TCP connection arrivals within WWW sessions, the complementary Weibull

distribution decays slower (has a more heavy tail) than the standard exponential distribution.

Measurements have also shown that the complementary distribution of holding times of TCP

connections within WWW sessions decays slower than exponentially [2].

In case of a Poisson arrival process, and exponential service process, the state transition

probabilities, which are part of the MDP model, become easy to formulate. This is due to

the memoryless property of the exponential distribution: the probability of the next event

being an arrival/departure is independent of the time offset between the latest arrival and the

latest departure. This is not the case if we replace the Poisson process with a non-Poisson

process such as the above self-similar process: the probability of the next event being an
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arrival/departure now becomes dependent on the time between the latest arrival and the latest

departure.

Generally, when a Poisson arrival process is multiplexed with a Markov (exponential)

service process, the resulting superposed process is a renewal process. In this case, the con-

trolled sequence of link states forms a semi-Markov decision process (SMDP) [16]. However,

when a renewal arrival process is multiplexed with a Markov (exponential) service process,

the resulting superposed process is not renewal. In order to formulate a SMDP it is necessary

to introduce new state variables, which contains enough information for accurate prediction

of future state vectors (resulting in preservation of the Markov property).

In a previous paper [11] we analyzed the performance of the standard link MDP model

applied for both Poisson and self-similar call arrivals. The simulation results showed that the

direct application of the standard link MDP model to the unexpected case with self-similar

call arrivals, yielded fairly good performance in terms of average reward loss.

This paper proposes an extended link MDP model for self-similar call arrivals and expo-

nential holding time distributions. We limit ourselves to exponential holding time distribu-

tions since this case is easier to handle than the case with heavy-tailed holding time distribu-

tions. Moreover, we consider only the one call category case. However, the model can easily

be generalized to cope with multiple categories, albeit with large computational complexity.

Numerical results show that the reward increase due to admission of a call (denoted link net-

gain) depends on the time offset between the latest arrival and the latest departure. We expect

that the performance of CAC and routing on the network level can be improved by extending

the standard link MDP model.

The paper is organized as follows. Section 2 formulates the CAC problem in terms of

offered traffic and optimization objective. Section 3 describes different models of the call

arrival process and call holding time distribution. Section 4 describes the link MDP model

for self-similar call arrivals. Section 5 outlines the MDP computation procedure for self-

similar call arrivals. Section 6 evaluates the standard and extended link MDP model using

numerical/simulation techniques. Section7 discuss how to deal with multiple call categories,

as well as CAC and routing on the network level. Finally, Section 8 concludes the paper.
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2 PROBLEM FORMULATION

We consider a single communication link with capacity
�

Mbps. The link is offered traffic

from � categories which are, for sake of simplicity, assumed to be subject to deterministic

multiplexing. The � -th category, �������
	�������������� , is characterized by the following:� Peak bandwidth requirement ��� [Mbps],� General call arrival process 	������ with two special cases:

– Poisson process with average arrival rate ��� [s  "! ],
– Self-similar process characterized by Weibull parameters #$� and %�� ,� Exponential service process 	'&(�'� with mean 1/ )*� [s],� Reward parameter +��,�.-0/1�243

The task is to find an optimal link CAC policy 576 which maximizes the mean reward from

the link, defined as

8 -95,3��;: �=<�> +?� �"� (1)

where �"� denotes the average category- � acceptance rate.

3 MODELLING OF CALL TRAFFIC

3.1 Call arrival process

Since the days of Erlang the Poisson model has commonly been used to describe the random

arrivals of call requests to the OD pairs of a telephone network. Although the Poisson model

serves its purpose in telephone networks, it lacks descriptive power in the case of Internet

where a substantial portion of traffic is World Wide Web (WWW) connections transported by

TCP. The nature of the WWW service is different from the telephone service; A person using

the WWW service is more likely to initiate additional downloads after the first download. A

person using the telephone service is more likely to initiate independent calls.
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Measurements on real WWW connection arrivals in the Internet has revealed that the

arrival process shows burstiness over many time scales, ranging from seconds to hours. Anja

Feldmann [7, 8] argues that this traffic is self-similar. The degree of burstiness over different

time scales or the extend of self-similarity can be expressed with just one single parameter,

the Hurst parameter. For self-similar processes its value is between 0.5 and 1 and the degree

of self-similarity increases as the Hurst parameter approaches 1. Together with the Poisson

nature of WWW session arrivals, the empirically observed property that the number of TCP

connections per WWW session is heavy tailed with indications of infinite variance provides

a mathematical explanation for the self-similar nature of WAN traffic at the TCP level.

More formal, a covariance-stationary process @A�
	�@B�DCFEHGI��� is called asymptotically

self-similar (with self-similarity parameter J , /�K4JLK;� ), for a large enough M ,

@N�PO�QM !R TS @VUXWZY�  (2)

where @ UXWZY �[-\@ UXWZY� C�E]GI��3 is the aggregated process of order (time scale) M , given by

@ U^W_Y� � �M -9@ U �  "! Y`WZa !cb ����� b @N� W 3��EdGI�fe (3)

The process under consideration is the number of call arrivals per time unit.

Anja Feldmann has observed that the WWW connection arrivals can be accurately mod-

eled by a renewal process with inter-arrival times that follow a Weibull distribution, ��-\gh3i�j -k�l�(mngh3o�
�qpsr  -�tu 3Rv . Recall that the Poisson process has exponentially distributed inter-

arrival times: ��-\gh3o� j -9�w�(mngh3o�
��pxr  $y�z . Hence, the Weibull distribution can be seen as a

generalized exponential distribution. When %i�{� the Weibull distribution becomes identical

to the standard exponential distribution.

The exponential probability density function (pdf) is

#|-\gh3��~} ��-9gh3} g � }} g -���p.r  $y�z 3o�Q��r  $y�z e (4)

The mean inter-arrival time for the Poisson process is:

�B� �l���������� g�#�-9gh3 } g��;�n�� gh��r  $y�z } g�� �� e (5)
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Figure 2: Self-similar call arrivals
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The Weibull pdf is

#�-9gh3�� } ��-9gh3} g � }} g -��ip�r  -�tu 3�v 3�� %#�  g#c¡w¢  "! r  -'tu 3�v e (6)

The mean inter-arrival time for the Weibull-based process is:

�B� �l����� � �� g�#�-9gh3 } g�� � �� g %#.  g#c¡l¢  "! r  -'tu 3Rv } g (7)£¤¤¤¥ ¤¤¤¦¨§ �ª© z«¬ ¢ hg��Q# § !0® ¢} § �;%�© z«¬ ¢  "! } g} g�� «
¢ §
¯\° vv } §

±�¤¤¤²¤¤¤³ �Q% � �� § r  T´ # % §
¯\° vv } § (8)

�;#µ�¶�� § !0® ¢ r  T´ } § �;#�·q-�� b �% 3�e (9)

Figure 2 and Figure 3 shows the aggregate arrival process @.UXWZY� for different time scalesM for the self-similar process and the Poisson process. In the Figures, the mean arrival rate �
of the Poisson process where chosen to be 1 [s  "! ], and the Weibull parameters were %w�I/1eX¸
and #B� !¹ U ! a ¯v Y y . Obviously, the variability of the aggregate process decreases faster for the

Poisson process than the self-similar process when the time scale is increasing.

For a self-similar process the variance of the aggregated process decays like

º #F+ � @VU^W_Y� �|»;M  �¼  (10)

where ½���¾¿-���pPJ�3 . The variance-time plot is a popular method for determining ½ and thus

the Hurst parameter JÀ�Á��p.½7Âf¾ . One simply plots log ! � º #F+ � @VU^WZY� � against log ! � -kMÃ3 and

then determines the slope pl½ . Figure 4 shows the variance-time plot for the studied Poisson

process and the self-similar process. Note that the logarithm of the variance drops with a

slope of p�� for Poisson process and with a slope pl½��/�Kn½ÄK�� , for the self-similar process.

Finally, we show in Figure 5, for the studied self-similar process, the Hurst parameter J
as function of the Weibull parameter % . Note that the Hurst parameter does not depend on the

Weibull parameter # .
8
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3.2 Call holding time distribution

The traditional model of call holding times &(� is the (negative) exponential distribution with

rate parameter ) : &]-9gh3l� P -k&��xmÈgh3��ª��p exp -�p�)*gh3 . The exponential distribution match

the actual holding times in case of telephony among other services. The associated holding

time pdf is

�-\gh3��~} &]-9gh3} g � }} g -���p.r  �É�z 3��Ê)�r  �É�z e (11)

The distribution function for the inter-departure times for a group of Ë calls is given by&lÌ¿-9gh3(� P -0& Ì� m{gh3(�Í��p exp -�plË|)*gh3 . Similarly, the pdf for the inter-departure times for

the group of Ë calls is:

��Ì¿-9gh3�� } &lÌ1-\gh3} g � }} g -��ip.r  Ì ÉÎz 3��ÊË*)�r  �É�z e (12)

However, for TCP connections invoked within WWW sessions the holding time is more

heavy tailed [2]. The reason is that the distribution of WWW document sizes on the Internet

is heavy tailed. A distribution is said to be heavy tailed if Prob
� @ Ï�Ð"�ZÑÒ%�Ð*Ó with Ô4Ï
/ .

Intuitively, a heavy-tailed holding time distribution means that if the call has not been com-

pleted for some time it becomes more and more unlikely that it will be completed soon. The

Pareto distribution is a popular choice for the heavy tailed distribution. It has the following

form: &]-\gh3o� P -0&w�Õmngh3��È�ip © « z ¬ Ó �#BÏn/ .
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4 LINK MODEL FOR SELF-SIMILAR CALL ARRIVALS:

ONE CATEGORY CASE

In this section we formulate the link MDP model for the one category ( �
�È� ) case, assuming

a general renewal call arrival process and an exponential holding time distribution. Let Ö��-9ËZ�rfh×Ø3 denote the current state of the MDP, and let Ù;�Ú-kMP�Û��Üi3 denote the MDP state

which is entered after an event in the current state. The variables Ë and M denote link state

representing the number of active calls from the single category. The variables r and Û denote

the event type (ARRIVAL/DEPARTURE) of the latest event. The variables × and Ü denote

the (probability mass) offset between an event of type r and Û , respectively, and the latest

complementary event. The complement of an ARRIVAL event is a DEPARTURE event and

vice versa.

The state space @ is given by:

@A�
	�Ö��{-9ËZ�rfh×Ø3ØCFËÝ�Ê/1���������1Þ � Â��àßFá�r��Ä	 ARRIVAL,DEPARTURE ��á×��;/1��������*àâÕã�p¶���� (13)

where
�

denotes the link capacity and � denotes the call’s bandwidth requirement.

The action space is given by

�;�
	�ä��V	'/1����F�o (14)

where äD�Ê/ denotes call rejection and ä��
� denotes call acceptance. The permissible action

space is a state-dependent subset of � :

��-9Öc3o�
	'ä����
C�ä��Ê/ if Ë b �DÏÁÞ � Â��àßf�µe (15)

The state transition probabilities are given by:

å¿æ�ç -käf3��
£¤¤¤¤¤¤¥ ¤¤¤¤¤¤¦
è z`é a¿êkëìa¿í éz é a¿ê ë ä�#�-9gh3hîZ-9gh3 } g� Mï�QË b �f�Ün�ÊÜµðìñ$-kòch×Ø3�àòH�V	'/1��������|�âÕã�pn���è z`é a¿êkëìa¿í éz é a¿ê ë -��ip.ä�3h#�-9gh3hîZ-9gh3 } g�IMï�QË7�Ün�ÊÜµðìñ$-kòch×Ø3�àòH�V	'/1��������*àâÕã�p¶���è z`é a1ó0ëìa¿í éz é a1ó ë ��Ì¿-9gh3hôµ-9gh3 } g� Mï�QË]p4�fàÜ¶�;Üµð�ñ�-kòch×Ø3�àòÝ�Ä	'/1��������*�â(ã�p4��/ otherwise  (16)
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where

îZ-9gh3�� � �ip.&lÌ¿-9g b.õ ðà3R�\Â � �ipö��-k÷�ðø3��0 (17)ôØ-9gh3�� � �ip���-9g b ÷Îðà3R�\Â � ��p.&lÌ¿- õ ðà3R�� (18)

where

õ ðo� £¥ ¦.ù ã�-kr�3Î
r�� ARRIVAL/1 r�� DEPARTURE  (19)

÷�ð�� £¥ ¦.ù ã*-0r�3ÎÈrw� DEPARTURE/1 rw� ARRIVAL  (20)

and

ù ã*-0r�3�� £¥ ¦ !Ì É � p log -��ipV×ØÂ?âÕãT3R�F r�� ARRIVAL# � p log -��ipV×ØÂ?âÕãT3R� !0® ¢ 
r�� DEPARTURE e (21)

Note that the time offset ù ã*-kr�3 is an increasing function of the probability mass offset × .

Moreover, in the case of exponentially distributed inter-arrival times (Poisson) and exponen-

tially distributed service times, the memoryless property of the exponential distribution allow

us to put õ ð��;÷Îð��;/ .
The offset Ü in the new state Ù is given by

Üµðìñ$-9ò,�×Ø3_�
£¤¤¤¤¤¤¥ ¤¤¤¤¤¤¦
Þ9&�Ì�-9gRú b ù ú3�âÕã$ßF rw� ARRIVAL �ÛÃ� DEPARTUREÞ\��-9gRú b ù ú3hâ(ãTßf rw� DEPARTURE �ÛÃ� ARRIVALÞ9&�Ì�-9gRú b ù ú b ù ã�-0r�3h3hâÕã$ßF
rw��ÛH� ARRIVALÞ\��-9gRú b ù ú b ù ã�-kr�3ø3�âÕã$ßF rw��ÛH� DEPARTURE e

The expected sojourn time ûc-\Ö,3 in state Ö is determined as

û�-9Ö,3�� �n�ê ë -9g7p.÷�ðh3h#�-9gh3hîZ-\gh3 } g b �n�ó ë -9g7p õ ðh3h�àÌ¿-9gh3hôµ-9gh3 } g�e (22)
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The expected immediate reward
8 -9Ö,3 in state Ö is given by:

8 -9Öc3o�ü+ � �ó ë �àÌ"-\gh3øôµ-\gh3 } g� (23)

where + denotes the reward parameter for the single category.

We now describe one way to determine the ù ú values used in the expression for the

state transition probabilities. For modelling convenience we replace the self-similar arrival

process with a Poisson process. The quality of the final solution is not critically dependent on

the ù ú values; some deviation from the ù ú values based on the self-similar arrival process is

tolerated.

The probability of a call arrival within an infinite interval is:

j - arrival in -k/1�243h3�� �n�� ��r  �ý y a Ì É�þ�z } g��Q�"û�-kË�3� (24)

where ûc-9Ë�3 is the mean sojourn time in link state Ë :

ûc-kË�3q� � � b Ë*)|�  "! e (25)

The probability for an arrival (assuming the offset is zero) during
� ghú�øgRú b ù ú�� can be

written:

j - arrival in -9gRú$øgRú b ù ú3ø3�� � z`é a¿í éz é ��r  �ý y a Ì É�þ�z } g_���¿ûc-9Ë�3hr  �z é ®�ÿ U Ì Y � �ip�r  í é ®�ÿ U Ì Y � (26)

Let us choose ù ú such that this probability becomes ��Â?â�ã times the probability of arrival

within an infinite interval. This gives:

ù úÕ�
p�û�-kË�3 log -��ip �âÕã r z`éÎ®�ÿ U Ì Y 3�e (27)

In order to determine the state transition probabilities, expected sojourn times, and ex-

pected immediate rewards, we use numerical integration, e.g. the Simpson’s method.
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5 MDP COMPUTATIONAL PROCEDURE FOR SELF-

SIMILAR CALL ARRIVALS

This section outlines the MDP computational procedure for determining an optimal CAC pol-

icy using the link model described in Section 4. The link net-gain function plays an important

role in MDP-based CAC and routing. For the self-similar link model, when we have an ar-

rival, the state jumps from the current state -9ËZ�rf�×Ø3 to the request state -kËZ ARRIVAL àÜi3 . If

the CAC controller decides to accept the request the new state will become -9Ë b �f ARRIVAL àÜi3 ,
otherwise the state ( Ë7 ARRIVAL �Üi3 is maintained. The link net-gain function is defined as

the increase in long-term reward due to admission of a call in link state -kËZ ARRIVAL àÜi3 :
Ç -kË7�Ü�ø5,3����*-9Ë b �f ARRIVAL �Ü�ø5,3Zp��|-kË7 ARRIVAL �Ü�ø5c3Î (28)

where �|-kË7 ARRIVAL �Ü�ø5,3 denotes the relative value for the single category in state -9ËZ ARRIVAL �Üi3 .
Note that the link CAC controller accepts the call request as long as the link net-gain is posi-

tive, and it rejects the call request when the link net-gain is negative.

To give more insight into the definition of relative values, let us define the expected link

reward,
8 -\Ð � ø5� � 3 , obtained in a interval -9g � øg � b � 3 of length

�
, assuming state Ð � at timeg � :

8 -9Ð � h5� � 3�� ��� � z�� a	�z�� 
 -9Ö�-9gh3ø3 } g��Õ (29)

where 
 -9Ö�-9gh3ø3 denotes the reward accumulation rate in state Öo-\gh3 . The process 	�Öo-9gh3�� is

driven by a probabilistic law of motion specified by certain state transition probabilities.

The relative value can now be written as:

�*-\Ö � ø5c3o� ������� � ��8 -9Ö � h5� � 3Zp 8 -9Ö���ø5� � 3R�fe (30)

That is, the relative value in state Ö � is defined as the difference in future reward earnings

when starting in the given state, compared to a reference state, Ö�� . In practice, the relative

value function is obtained by solving a set of linear equations (see below).

In the context of the link MDP model outlined in the previous section, the algorithm for

determining the optimal CAC policy 5 and the associated relative values �|-9Ö_ø5,3 and average

reward rate
8 -\5,3 can be summarized as follows:
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1. Initialization: Choose an initial CAC policy 5 , e.g. the complete sharing policy

2. Value determination: Find the relative values �|-9Ö_ø5,3 and average reward rate
8 -95c3

for the current CAC policy 5
3. Policy improvement: Improve the link CAC policy 5 based on the new relative values

and the new average reward rate

4. Convergence test: Repeat from 2 until average reward per time unit converges.

According to MDP theory an optimal policy is found after a finite number of policy iter-

ations in case of a finite state and policy space [16].

The value determination step determines the average reward rate
8 -95,3 and relative values�|-9Ö_ø5,3 for all states ÖV�Ý@ by solving a sparse system of linear equations:£¥ ¦ �|-9Ö_ø5,3�� 8 -\Ö,3_p 8 -95c3�ûc-\Ö,3 b���� <�� å¿æ�ç -käf3��|-\Ùqh5,3�|-9Ö���ø5,3��Ê/1á ÖÄ� @���	�Ö �?�� (31)

where the following quantities need to be specified:� @ : the state space, i.e. the set of possible states,� äD�45o-9Ö,3 : the control action in state Ö ,� û�-9Ö,3 : the expected sojourn time in state Ö ,� 8 -\Ö,3 : the expected link reward when leaving state Ö ,� å1æ�ç -käf3 : the transition probability from state Ö to state state Ù , given that action ä is

taken in state state Ö ,� Ö�� : the reference state (e.g. the empty state),

in order to compute the unknowns:� �|-\Ö�ø5,3 : the relative value in state Ö under CAC policy 5 ,� 8 -\5,3 : the average rate of link reward under policy 5 .
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The computation (time) complexity of the value determination step of policy iteration is

a function of the size, ! , of the state space. Traditional Gauss elimination has complexity

O -"!$#�3 . This can be seen as an upper limit of the actual complexity since the system is sparse

and more efficient iterative algorithms can be used.

The policy improvement step consists of finding the action that maximizes the relative

value in each state Ö ��@ :

äD��%'&�(�)*%,+- </. U10�Y
2 8 -9Ö,3Zp 8 -\5,3�û�-9Ö,3 b :ç <�� å¿æ�ç -0ä�3��|-9Ùoø5c3'3P (32)

where ��-\Ö,3 denotes the set of possible actions in state Ö . The set of actions which yields the

maximum improvement of relative values constitute an improved policy 554 to be used again

in the value determination step. The policy improvement step has complexity O -�¾76 !�3 , where� denotes the number of unique bandwidth categories.

6 NUMERICAL RESULTS

6.1 Considered link models

The performance analysis is performed for the single link case. Two MDP models for CAC

are compared numerically:� MDP – standard link model assuming Poisson call arrivals [5],� MDP+ – extended link model assuming self-similar call arrivals according to Section

4.

6.2 Examples and results

The simulation scenario is described in Table 1. The traffic parameters are chosen such that

the link load becomes moderate (83 % of link capacity). Each measurement period is based

on ¾98V��/;: call events.

Two types of call arrival models are used the the simulations: the Poisson model (po) and

the self-similar model (ss). The mean Poisson arrival rate � and the mean holding time ��Â)
are first chosen. The self-similar call arrival process is chosen as follows. First, the Weibull
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link capacity
�

[Mbps] 24

#traffic categories � 1

call arrival rate � [ §  "! ] 20

mean holding time ��Â') [s] 1

bandwidth � [Mbps] 1

link traffic [Mbps*Erlang] 20

reward parameter + 1

#offset values âÕã 10

Table 1: Description of simulation scenario

parameter % is set to %P� /1eX¸ which is plausible value for real WWW connection arrivals

[7, 8]. The choice %��[/Te ¸ gives a Hurst parameter of J �[/Te ¸f¸ , see Figure 5. Second, the

Weibull parameter # is set to # � !¹ U ! a ¯v Y y which gives equal mean inter-arrival time for the

Poisson and self-similar process.

Table 2 shows the reward loss as an average over < � ¾�/ simulation runs. The reward

loss = in each simulation run is computed as

=��
��p 8 Â 8  (33)

where
8 � � �=<?> +?� �¿� and

8 � � � <�> +?�k�¿� denotes the carried and offered reward rate, re-

spectively.

The average reward loss is computed as =È� !> � >��? ! =_� , where =_� denotes the reward

loss for simulation � . For assessment of the accuracy of the simulation results we present

values of the standard deviation of the reward loss in the same table. We compute the standard

deviation as:

§ � @AAB �< p4� >: ��? ! -C=_�|p =Ø3ED�e (34)

Figures 6 and 7 show the relative value function and the link net-gain function, respec-

tively, for the standard MDP model assuming Poisson and self-similar call arrival processes.

Figures 8 – 11 show the relative values in different states -9ËZ�rfh×Ø3 for the extended link

model (MDP+) assuming Poisson call arrival process.
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Reward loss in % (sdev)

MDP po 6.61 (0.06)

MDP ss 15.37 (0.10)

MDP+ po 6.61 (0.06)

MDP+ ss 15.32 (0.13)

Table 2: Reward loss for the standard (MDP) and the extended (MDP+) methods for Poisson

and self-similar call arrivals, respectively.

Figures 12 – 15 show the relative values in different states -kË7�rfh×Ø3 for the extended link

model (MDP+) assuming self-similar call arrival process.

6.3 Results Analysis

From Table 2 the following conclusions are drawn:� Although the self-similar traffic has the same mean inter-arrival time as the Poisson

traffic, the reward loss for self-similar traffic is significantly higher since the burstiness

of this arrival process is larger.� The standard (MDP) and extended (MDP+) models yield similar reward loss since both

CAC policies always accepts a new call as long as there is sufficient free capacity on

the link (complete sharing).

From the graphs in Figures 6 and 7 the following conclusions are drawn:� The relative value curve and the gain curve are identical for Poisson and self-similar

call arrivals, due to the particular choice of �cà# and % parameters.� The gain is maximal for ËÝ�Q/ and drops as Ë increases.

From the graphs in Figures 8 – 11, which considers Poisson call arrivals, the following

conclusions are drawn:� Due to the memoryless property of the exponential inter-arrival and service distribution,

the relative values are constant for different events r and offsets × .
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� The relative value �|-kËZh5,3 increases as the link state Ë increases.

From the graphs in Figures 12 – 15, which considers self-similar call arrivals, the follow-

ing conclusions are drawn:� The relative values �|-kË7�rfh×�ø5c3 depends on the link state Ë , event type r and offset

value × , besides the CAC policy 5 .� The relative value �|-kËZàrfh×�ø5,3 is highest for ×.�;/ and drops as × increases.� An offset × of zero is equivalent to a memoryless (Poisson) situation.� Self-similar arrival processes give rise to offsets × larger than zero, which yield smaller

relative values (expected reward) and therefore larger reward loss, see Table 2.� The relative value �|-kËZàrfh×�ø5,3 for r�� ARRIVAL drops linearly as × increases.� The relative value �*-9ËZ�rf�×�ø5,3 for r � DEPARTURE drops faster than linearly as ×
increases.
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Figure 6: Relative value for standard MDP
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Figure 14: Relative values in ËÍ� �IH for

MDP+ model with self-similar traffic.
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7 DISCUSSION

In this section we discuss how to deal with multiple call categories. We also discuss how to

model MDP-based CAC and routing on the network level, assuming self-similar call arrival

processes to the origin-destination (OD) node pairs.

As we mentioned in the introduction, the superposition of two or more renewal processes

is not, in general, a renewal process. Similarly to the ��� � case, an exact SMDP formulation

makes it necessary to keep track of the order of the � latest call events with unique category

index as well as the time distance (offsets) between the events. For � categories, the exact

state space will contain !��A-�¾��3MLXâ D 6  "!ã â states, where â denotes the number of simple

states, N � -9Ë ! �������àË 6 3 , on the link. The size of the state space, and the computational

complexity, therefore increases exponentially with the number of categories. Already for� �À¾ , â(ãÊ� ��/ and â � ¾f¸ we have !Á�OFf/f/�/f/f/ states. The practical usage of the

extended link MDP model is limited to the �Ú�À� case, or to the �Ú�A¾ case with small

values of âDã . There is no need to consult the extended link model to determine the optimal

policy for � � � . When �Ú�À� the optimal policy is to accept the call provided there is

sufficient free capacity on the link (complete sharing).

On the network level, we have a set of OD node pairs which are offered a set of call arrival

processes with unique bandwidth requirements and holding time distributions. Between each

OD pair there is a set of alternative paths. The task of CAC and routing is to first determine

the set of feasible paths between the OD pair which offers sufficient QoS to the new and

existing calls. Second, the network should chose to reject the call or accept it on some path

among the set of feasible paths. This choice should be consistent with GoS constraints as

well as maximizing the average revenue rate for the operator.

Each given network link is offered traffic from a sub set, perhaps all, of the OD pairs.

Assume that we have only one category with unique bandwidth requirement and exponential

holding time distribution. Further, assume that the call arrival process to each OD pair sharing

the given link is a renewal with Weibull distributed inter-arrival times. To obtain a link MDP

model with feasible computational complexity we need to model the superposed call arrival

process to the link. The Palm-Khintchine theorem states that the superposition of many

independent and properly normalized renewal processes forms a Poisson process [15]. Hence,

an exact or near-exact representation of the superposed arrival process, similar to the extended
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link MDP model for � categories, is only of interest for a limited range of network sizes,

where relatively few OD pairs offer traffic to the link. Note that although the �
�
� case has

a simple a priori solution on the link-level, this is not the case on the network level.

8 CONCLUSION

In this paper we formulated the CAC problem for a single link operating in loss mode. In this

formulation each call category is characterized by its reward parameter defining the expected

reward for carrying a call from this category. Such a formulation allows to apply Markov

Decision Process (MDP) theory to solve the problem.

Traditionally, the MDP approach to CAC and routing has assumed Poisson call arrivals

and exponentially distributed call holding times. These assumptions are reasonable for tele-

phone calls. However, they become inaccurate for the TCP connections invoked within the

World Wide Web (WWW) Internet service. In particular, measurements on real Internet traf-

fic have revealed that the TCP connection arrival process is self-similar and that TCP connec-

tion holding time distribution is more heavy tailed than the standard exponential distribution.

This paper proposes an extended MDP model for self-similar call arrivals and exponen-

tial holding time distributions. We limit ourselves to exponential holding time distributions

since this case is easier to handle than the case with heavy-tailed holding time distributions.

Moreover, we consider only the one call category case. However, the model can easily be

generalized to cope with multiple categories, albeit with large computational complexity.

Numerical results show that the reward increase due to admission of a call (denoted link

net-gain) depends on the time offset between the latest arrival and the latest departure.

Future work includes modelling of MDP-based CAC and routing on the network level,

assuming self-similar call arrivals to the OD pairs.
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